[1]
|
Eyring, H. (1936) Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates. The Journal of Chemical Physics, 4, 283.
https://doi.org/10.1063/1.1749836
|
[2]
|
Robertson, R. (1966) Theory for the Plasticity of Glassy Polymers. The Journal of Chemical Physics, 44, 3950. https://doi.org/10.1063/1.1726558
|
[3]
|
Youngquist, J., Myers, G.E., Ageney, U. and Luther, W.M. (1992) Lignocellulosic-Plastic Composites from Recycled Materials. Forest, 2, 1-2.
https://doi.org/10.1021/bk-1992-0476.ch004
|
[4]
|
Bledzki, A.K., Gassan, J. and Theis, S. (1998) Wood-Filled Thermoplastic Composites. Mechanics of Composite Materials, 34, 563-568.
https://doi.org/10.1007/BF02254666
|
[5]
|
Sewda, K. and Maiti, S.N. (2013) Dynamic Mechanical Properties of High Density Polyethylene and Teak Wood Flour Composites. Polymer Bulletin, 70, 2657-2674.
https://doi.org/10.1007/s00289-013-0941-0
|
[6]
|
Selke, S.E. and Wichman, I. (2004) Wood Fiber/Polyolefin Composites. Composite Part A, 35, 321-326. https://doi.org/10.1016/j.compositesa.2003.09.010
|
[7]
|
Joshi, S.V., Drzal, L.T., Mohanty, A.K. and Arora, S. (2004) Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites? Composite Part A, 35, 371-376. https://doi.org/10.1016/j.compositesa.2003.09.016
|
[8]
|
Orhan, Y. and Büyükgüngör, H. (2000) Enhancement of Biodegradability of Disposable Polyethylene in Controlled Biological Soil. International Biodeterioration & Biodegradation, 45, 49-55. https://doi.org/10.1016/S0964-8305(00)00048-2
|
[9]
|
Bledzki, A.K. and Gassan, J. (1999) Composites Reinforced with Cellulose Based Fibres. Progress in Polymer Science, 24, 221-274.
https://doi.org/10.1016/S0079-6700(98)00018-5
|
[10]
|
Maiti, S.N. and Hassan, M.R. (1989) Melt Rheological Properties of Polypropylene-Wood Flour Composites. Journal of Applied Polymer Science, 37, 2019-2032.
https://doi.org/10.1002/app.1989.070370721
|
[11]
|
Li, Q. and Matuana, L.M. (2003) Surface of Cellulosic Materials Modified with Functionalized Polyethylene Coupling Agents. Journal of Applied Polymer Science, 88, 278-286. https://doi.org/10.1002/app.11681
|
[12]
|
Rizvi, G., Matuana, L.M. and Park, C.B. (2000) Foaming of PS/Wood Fiber Composites Using Moisture as a Blowing Agent. Polymer Engineering & Science, 40, 2124-2132. https://doi.org/10.1002/pen.11345
|
[13]
|
Patil, Y.P., Gajre, B., Dusane, D., Chavan, S. and Mishra, S. (2000) Effect of Maleic Anhydride Treatment on Steam and Water Absorption of Wood Polymer Composites Prepared from Wheat Straw, Cane Bagasse, and Teak Wood Sawdust Using Novolac as Matrix. Journal of Applied Polymer Science, 77, 2963-2967.
https://doi.org/10.1002/1097-4628(20000923)77:13<2963::AID-APP20>3.0.CO;2-0
|
[14]
|
Rowell, R.M., Sanadi, A.R., Caulfield, D.F., Jacobson, E., Leo, A.L., Carvalho, F.X. and Frollini, E. (1997) Utilization of Natural Fibers in Plastic Composites: Problems and Opportunities. Forest, 2, 23-51.
|
[15]
|
Zhang, M.Q., Rong, M.Z. and Lu, X. (2005) Fully Biodegradable Natural Fiber Composites from Renewable Resources: All-Plant Fiber Composite. Composites Science and Technology, 65, 2514-2525.
https://doi.org/10.1016/j.compscitech.2005.06.018
|
[16]
|
Saheb, D.N. and Jog, J.P. (1999) Natural Fiber Polymer Composites: A Review. Polymers for Advanced Technologies, 18, 351-363.
https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
|
[17]
|
Balasuriya, P.W., Ye, L. and Mai, Y.W. (2001) Mechanical Properties of Wood Flake-Polyethylene Composites. Part I: Effects of Processing Methods and Matrix Melt Flow Behaviour. Compos A, 32, 619-629.
https://doi.org/10.1016/S1359-835X(00)00160-3
|
[18]
|
Brydson, J.A. (1999) Plastics Materials. Butterworth Heinemann, New York.
|
[19]
|
Stark, N.M. and Matuana, L.M. (2003) Ultraviolet Weathering of Photostabilized Wood-Flour Filled High-Density Polyethylene Composites. Journal of Applied Polymer Science, 90, 2609-2617. https://doi.org/10.1002/app.12886
|
[20]
|
Stark, N.M. and Matuana, L.M. (2004) Surface Chemistry Changes of Weathered HDPE/Wood-Flour Composites Studied by XPS and FTIR Spectroscopy. Polymer Degradation and Stability, 86, 1-9.
https://doi.org/10.1016/j.polymdegradstab.2003.11.002
|
[21]
|
Van Krevelen, D.W. (1990) Properties of Polymers. 3rd Edition, Elsevier, Amsterdam.
|
[22]
|
Kim, D.-M. and Iedema, P.D. (2004) Molecular Weight Distribution in Low-Density Polyethylene Polymerization; Impact of Scission Mechanisms in the Case of a Tubular Reactor. Chemical Engineering Science, 59, 2039-2052.
https://doi.org/10.1016/j.ces.2004.02.002
|
[23]
|
Verros, G.D. (2003) Calculation of Molecular Weight Distribution in Non-Linear Free Radical Copolymerization. Polymer, 44, 7021-7032.
https://doi.org/10.1016/j.polymer.2003.08.029
|
[24]
|
Pladis, P. and Kiparissides, C. (1998) A Comprehensive Model for the Calculation of Molecular Weight + Long-Chain Branching Distribution in Free-Radical Polymerizations. Chemical Engineering Science, 53, 3315-3333.
https://doi.org/10.1016/S0009-2509(98)00133-X
|
[25]
|
Cervantes, A.M., Tonelli, S., Brandolin, A., Bandoni, J.A. and Biegler, L.T. (2002) Large-Scale Dynamic Optimization for Grade Transitions in a Low Density Polyethylene Plant. Computers & Chemical Engineering, 26, 227-237.
https://doi.org/10.1016/S0098-1354(01)00743-8
|
[26]
|
Sun, L.Y., Gibson, R.F., Gordaninejad, F. and Suhr, J. (2009) Energy Absorption Capability of Nanocomposites: A Review. Composites Science and Technology, 69, 2392-2409. https://doi.org/10.1016/j.compscitech.2009.06.020
|
[27]
|
McShane, G.J., Stewart, C., Aronson, M.T., Wadley, H.N.G., Fleck, N.A. and Deshpande, V.S. (2008) Dynamic Rupture of Polymer-Metal Bilayer Plates. International Journal of Solids and Structures, 45, 4407-4426.
https://doi.org/10.1016/j.ijsolstr.2008.03.017
|
[28]
|
Amini, M.R., Simon, J. and Nemat-Nasser, S. (2010) Numerical Modeling of Effect of Polyurea on Response of Steel Plates to Impulsive Loads in Direct Pressure-Pulse Experiments. Mechanics of Materials, 42, 615-627.
https://doi.org/10.1016/j.mechmat.2009.09.009
|
[29]
|
Jatin, Sudarkodi, V. and Basu, S. (2014) Investigations into the Origins of Plastic Flow and Strain Hardening in Amorphous Glassy Polymers. International Journal of Plasticity, 56, 139-155. https://doi.org/10.1016/j.ijplas.2013.11.007
|
[30]
|
Kurtz, S.M., Rimnac, C.M., Santner, T.J. and Bartel, D.L. (1996) Exponential Model for the Tensile True Stress-Strain Behavior of As-Irradiated and Oxidatively Degraded Ultra-High Molecular Weight Polyethylene. Journal of Orthopaedic Research, 14, 755-761. https://doi.org/10.1002/jor.1100140512
|
[31]
|
Pouriayevali, H., Arabnejad, S., Guo, Y.B. and Shim, V.P.W. (2013) A Constitutive Description of the Rate-Sensitive Response of Semi-Crystalline Polymers. International Journal of Impact Engineering, 62, 35-47.
https://doi.org/10.1016/j.ijimpeng.2013.05.002
|
[32]
|
Epee, A.F., Lauro, F., Bennani, B. and Bourel, B. (2011) Constitutive Model for a Semi-Crystalline Polymer under Dynamic Loading. International Journal of Solids and Structures, 48, 1590-1599. https://doi.org/10.1016/j.ijsolstr.2011.02.009
|
[33]
|
Argon, A.S. (1973) A Theory for the Low-Temperature Plastic Deformation of Glassy Polymers. Philosophical Magazine, 28, 839.
https://doi.org/10.1080/14786437308220987
|
[34]
|
Baschnagel, J., Binder, K., Doruker, P., Gusev, A.A., Hahn, O., Kremer, K., et al. (2000) Bridging the Gap between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives. In: Viscoelasticity, Atomistic Models, Statistical Chemistry, Vol. 152, Springer, Berlin, 41-156. https://doi.org/10.1007/3-540-46778-5_2
|
[35]
|
Paul, W., Yoon, D.Y. Smith, G.D. (1995) An Optimized United Atom Model for Simulations of Polymethylene Melts. The Journal of Chemical Physics, 103, 1702-1709.
https://doi.org/10.1063/1.469740
|
[36]
|
Yoon, D.Y., Smith, G.D. and Matsuda, T. (1993) A Comparison of a United Atom and an Explicit Atom Model in Simulations of Polymethylene. The Journal of Chemical Physics, 98, 10037-10043. https://doi.org/10.1063/1.464436
|
[37]
|
Faller, R. and Muller-Plathe, F. (2002) Modeling of Poly (Isoprene) Melts on Different Scales. Polymer, 43, 621-628. https://doi.org/10.1016/S1089-3156(01)00013-7
|
[38]
|
Fukunaga, H., Takimoto, J. and Doi, M. (2002) A Coarse-Graining Procedure for Flexible Polymer Chains with Bonded and Nonbonded Interactions. The Journal of Chemical Physics, 116, 8183-8190. https://doi.org/10.1063/1.1469609
|
[39]
|
Müller-Plathe, F. (2002) Coarse-Graining in Polymer Simulation: From the Atomistic to the Mesoscopic Scale and Back. ChemPhysChem, 3, 754-769.
https://doi.org/10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-U
|
[40]
|
Uhlherr, A. and Theodorou, D.N. (1998) Hierarchical Simulation Approach to Structure and Dynamics of Polymers. Current Opinion in Solid State & Materials Science, 3, 544-551. https://doi.org/10.1016/S1359-0286(98)80023-5
|
[41]
|
Deng, D., Argon, A.S. and Yip, S. (1989) Simulation of Plastic Deformation in a Two-Dimensional Atomic Glass by Molecular Dynamics IV. Philosophical Transactions of the Royal Society of London, 329, 613.
https://doi.org/10.1098/rsta.1989.0092
|
[42]
|
Maeda, K. and Takeuchi, S. (1981) Atomistic Process of Plastic Deformation in a Model Amorphous Metal. Philosophical Magazine A, 44, 643-656.
https://doi.org/10.1080/01418618108236167
|
[43]
|
Srolovitz, D., Vitek, V. and Egami, T. (1983) An Atomistic Study of Deformation of Amorphous Metals. Acta Metallurgica et Materialia, 31, 335-352.
https://doi.org/10.1016/0001-6160(83)90110-4
|
[44]
|
Theodorou, D. and Suter, U. (1985) Detailed Molecular Structure of a Vinyl Polymer Glass. Macromolecules, 18, 1467. https://doi.org/10.1021/ma00149a018
|
[45]
|
Theodorou, D. and Suter, U. (1986) Atomistic Modeling of Mechanical Properties of Polymeric Glasses. Macromolecules, 19, 139.
https://doi.org/10.1021/ma00155a022
|
[46]
|
Mott, P., Argon, A.S. and Suter, U. (1993) Atomistic Modelling of Plastic Deformation of Glassy Polymers. Philosophical Magazine, 67, 931.
https://doi.org/10.1080/01418619308213969
|
[47]
|
Hutnik, M., Argon, A.S. and Suter, U. (1993) Simulation of Elastic and Plastic Response in the Glassy Polycarbonate of 4,4’-Isopropylidenediphenol. Macromolecules, 26, 1097. https://doi.org/10.1021/ma00057a034
|
[48]
|
Brown, D. and Clarke, J. (1991) Molecular Dynamics Simulation of an Amorphous Polymer under Tension. 1. Phenomenology. Macromolecules, 24, 2075.
https://doi.org/10.1021/ma00008a056
|
[49]
|
Kremer, K. (2001) Multiscale Problems in Polymer Science: Simulation Approaches. MRS Bulletin, 26, 205-210. https://doi.org/10.1557/mrs2001.43
|
[50]
|
Depa, P.K. and Maranas, J.K. (2005) Speed Up of Dynamic Observables in Coarse-Grained Molecular-Dynamics Simulations of Unentangled Polymers. The Journal of Chemical Physics, 123, Article ID: 094901. https://doi.org/10.1063/1.1997150
|
[51]
|
Depa, P.K. and Maranas, J.K. (2007) Dynamic Evolution in Coarse-Grained Molecular Dynamics Simulations of Polyethylene Melts. The Journal of Chemical Physics, 126, Article ID: 054903. https://doi.org/10.1063/1.2433724
|
[52]
|
Lavine, M.S., Waheed, N. and Rutledge, G.C. (2003) Molecular Dynamics Simulation of Orientation and Crystallization of Polyethylene during Uniaxial Extension. Polymer, 44, 1771-1779. https://doi.org/10.1016/S0032-3861(03)00017-X
|
[53]
|
Pearson, D.S., Ver Strate, G., Von Meerwall, E. and Schilling, F.C. (1987) Viscosity and Self-Diffusion Coefficient of Linear Polyethylene. Macromolecules, 20, 1133-1141.
https://doi.org/10.1021/ma00171a044
|
[54]
|
Tries, V., Paul, W., Baschnagel, J. and Binder, K. (1997) Modeling Polyethylene with the Bond Fluctuation Model. The Journal of Chemical Physics, 106, 738-748.
https://doi.org/10.1063/1.473162
|
[55]
|
Capaldi, F.M., Boyce, M.C. and Rutledge, G.C. (2001) Enhanced Mobility Accompanies the Active Deformation of a Glassy Amorphous Polymer. Physical Review Letters, 89, Article ID: 175505.
|
[56]
|
Yang, L., Srolovitz, D.J. and Yee, A.F. (1999) Molecular Dynamics Study of Isobaric and Isochoric Glass Transitions in a Model Amorphous Polymer. The Journal of Chemical Physics, 110, 7058-7069. https://doi.org/10.1063/1.478611
|
[57]
|
Takeuchi, H. and Roe, R.J. (1991) Molecular Dynamics Simulation of Local Chain Motion in Bulk Amorphous Polymers. II. Dynamics at Glass Transition. The Journal of Chemical Physics, 94, 7458-7465. https://doi.org/10.1063/1.460176
|
[58]
|
Baltsas, A., Papadopoulos, E. and Kiparissides, C. (1998) Application and Validation of the Pseudo-Kinetic Rate Constant Method to High Pressure LDPE Tubular Reactors. Computers & Chemical Engineering, 22, S95-S102.
https://doi.org/10.1016/S0098-1354(98)00042-8
|
[59]
|
Haefele, M., Kienle, A., Boll, M. and Schmidt, C.-U. (2006) Modeling and Analysis of a Plant for the Production of Low Density Polyethylene. Computers & Chemical Engineering, 31, 51-65. https://doi.org/10.1016/j.compchemeng.2006.05.001
|
[60]
|
Asteasuain, M., Tonelli, S.M., Brandolin, A. and Bandoni, J.A. (2001) Dynamic Simulation and Optimisation of Tubular Polymerisation Reactors in gPROMS. Computers & Chemical Engineering, 25, 509-515.
https://doi.org/10.1016/S0098-1354(01)00631-7
|
[61]
|
Bezzo, F., Macchietto, S. and Pantelides, C.C. (2000) A General Framework for the Integration of Computational Fluid Dynamics and Process Simulation. Computers & Chemical Engineering, 24, 653-658.
https://doi.org/10.1016/S0098-1354(00)00372-0
|
[62]
|
Li, J., Mulder, T., Vorselaars, B., Lyulin Alexey, V. and Michels, M.A. (2006) Monte Carlo Simulation of Uniaxial Tension of an Amorphous Polyethylene-Like Polymer Glass. Macromolecules, 39, 7774-7782. https://doi.org/10.1021/ma061042w
|
[63]
|
Li, J., Mulder, T., Vorselaars, B., Lyulin, A.V. and Michels, M.A.J. (2006) Monte Carlo Simulation of Uniaxial Tension of an Amorphous Polyethylene-Like Polymer Glass. Macromolecules, 39, 7774-7782. https://doi.org/10.1021/ma061042w
|
[64]
|
Ospina, S.A., Restrepo, J. and Lopez, B.L. (2003) Deformation of Polyethylene: Monte Carlo Simulation. Materials Research Innovations, 7, 27-30.
https://doi.org/10.1080/14328917.2003.11784755
|
[65]
|
Brostow, W. and Corneliussen, R.D. (1986) Failure of Plastics. Hanser, New York.
|
[66]
|
David, D.J. and Mishra, A. (1999) Relating Materials Properties to Structure: Handbook and Software for Polymer Calculations and Material Properties. Technomic Publishing Co., Lancaster.
|
[67]
|
Boyd, R.H. (1985) Relaxation Processes in Crystalline Polymers: Molecular Interpretation—A Review. Polymer, 26, 1123-1133.
https://doi.org/10.1016/0032-3861(85)90240-X
|
[68]
|
Murayama, T. (1987) Polymers: An Encyclopedic Source Book of Engineering Properties Encyclopedia Reprint Series. John Wiley & Sons, New York.
|
[69]
|
Khonakdar, H.A., Morshedian, J., Wagenknecht, U. and Jafari, S.H. (2003) An Investigation of Chemical Crosslinking Effect on Properties of High Density Polyethylene. Polymer, 44, 4301-4309. https://doi.org/10.1016/S0032-3861(03)00363-X
|
[70]
|
Munaro, M. and Akcelrud, L. (2008) Correlations between Composition and Crystallinity of LDPE/HDPE Blends. Journal of Polymer Research, 15, 83-88.
https://doi.org/10.1007/s10965-007-9146-2
|
[71]
|
Sha, H., Zhang, X. and Harrison, I.R. (1991) A Dynamic Mechanical Thermal Analysis (DMTA) Study of Polyethylenes. Thermochimica Acta, 192, 233-242.
https://doi.org/10.1016/0040-6031(91)87165-S
|
[72]
|
Sirotkin, R.O. and Brooks, N.W. (2001) The Dynamic Mechanical Relaxation Behaviour of Polyethylene Copolymers Cast from Solution. Polymer, 42, 9801.
https://doi.org/10.1016/S0032-3861(01)00535-3
|
[73]
|
Goertzen, W.K. and Kessler, M.R. (2007) Dynamic Mechanical Analysis of Carbon/Epoxy Composites for Structural Pipeline Repair. Composites Part B: Engineering, 38, 1-9. https://doi.org/10.1016/j.compositesb.2006.06.002
|
[74]
|
Kroschwitz, J.I. (1990) Concise Encyclopedia of Polymer Science and Technology. John Wiley and Sons, New York.
|
[75]
|
Lin, Z., Lin, Z., Zhen, S., Kui, N., Ami, M.I., Ayw, Y.W. and Xei, H.K. (1995) Electrical insulating materials. International Symposium on Electrical Insulating Materials, Tokyo, 17-20 September 1995, 173-176.
|
[76]
|
Boyer, R.F. (1968) Dependence of Mechanical Properties on Molecular Motion in Polymers. Polymer Engineering & Science, 8, 161-185.
https://doi.org/10.1002/pen.760080302
|
[77]
|
Bartczak, Z., Argon, A.S. and Cohen, R.E. (1992) Deformation Mechanisms and Plastic Resistance in Single-Crystal-Textured High-Density Polyethylene. Macromolecules, 25, 5036-5053 https://doi.org/10.1021/ma00045a034
|
[78]
|
Hossain, D., Tschopp, M.A., Ward, D.K., Bouvard, J.L., Wang, P. and Horstemeyer, M.F. (2010) Molecular Dynamics Simulations of Deformation Mechanisms of Amorphous Polyethylene. Polymer, 51, 6071-6083.
https://doi.org/10.1016/j.polymer.2010.10.009
|
[79]
|
Tschopp, M.A., Ward, D.K., Bouvard, J.L. and Horstemeyer, M.F. (2011) Atomic Scale Deformation Mechanisms of Amorphous Polyethylene under Tensile Loading. TMS Conference Proceedings, Vol. 2, 1-6.
https://doi.org/10.1002/9781118062142.ch95
|
[80]
|
Plimpton, S. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117, 1-19.
https://doi.org/10.1006/jcph.1995.1039
|
[81]
|
Bouvard, J.L., Ward, D., Hossain, D., Marin, E.B. and Horstemeyer, M.F. (2009) Review of Hierarchical Multiscale Modeling to Describe the Mechanical Behavior of Amorphous Polymers. JEMT, Special Issue: Predictive Science & Technology in Mechanics & Materials, 131, Article ID: 041206. https://doi.org/10.1115/1.3183779
|
[82]
|
Han, J., Gee, R.H. and Boyd, R.H. (1994) Glass Transition Temperatures of Polymers from Molecular Dynamics Simulations. Macromolecules, 27, 7781-7784.
https://doi.org/10.1021/ma00104a036
|
[83]
|
Gee, R.H. and Boyd, R.H. (1998) The Role of the Torsional Potential in Relaxation Dynamics: A Molecular Dynamics Study of Polyethylene. Computational and Theoretical Polymer Science, 8, 93-98.
https://doi.org/10.1016/S1089-3156(98)00020-8
|
[84]
|
Mayo, S.L., Olafson, B.D. and Goddard III, W.A. (1990) DREIDING: A Generic Force Field for Molecular Simulations. The Journal of Physical Chemistry, 94, 8897-8909. https://doi.org/10.1021/j100389a010
|
[85]
|
Capaldi, F.M., Boyce, M.C. and Rutledge, G.C. (2001) Enhanced Mobility Accompanies the Active Deformation of a Glassy Amorphous Polymer. Physical Review Letters, 89, Article ID: 175505. https://doi.org/10.1103/PhysRevLett.89.175505
|
[86]
|
Tschopp, M.A., Bouvard, J.L., Ward, D.K., Bammann, D.J. and Horstemeyer, M.F. (2013) Influence of Ensemble Boundary Conditions (Thermostat and Barostat) on the Deformation of Amorphous Polyethylene by Molecular Dynamics.
|
[87]
|
Shepherd, J.E., McDowell, D.L. and Jacob, K.I. (2006) Modeling Morphology Evolution and Mechanical Behavior during Thermo-Mechanical Processing of Semi- Crystalline Polymers. Journal of the Mechanics and Physics of Solids, 54, 467-489.
https://doi.org/10.1016/j.jmps.2005.10.003
|
[88]
|
Shepherd, J.E. (2006) Multiscale Modeling of the Deformation of Semi-Crystalline Polymers. PhD Thesis, Georgia Institute of Technology, Atlanta.
|
[89]
|
Brandrup, J. and Immergut, E.H. (1989) Polymer Handbook. 3rd Edition, Wiley-Interscience, New York.
|
[90]
|
Plimpton, S.J. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. Computational Physics, 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
|
[91]
|
Melchionna, S., Ciccotti, G. and Holian, B.L. (1993) Hoover NPT Dynamics for Systems Varying in Shape and Size. Molecular Physics, 78, 533-544.
https://doi.org/10.1080/00268979300100371
|
[92]
|
Nosé, S.J. (1984) A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. Chemical Physics, 81, 511-519.
https://doi.org/10.1063/1.447334
|
[93]
|
Hoover, W.G. (1985) Canonical Dynamics: Equilibrium Phase-Space Distributions. Physical Review A, 31, 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
|
[94]
|
Lyubartsev, A. (2005) Multiscale Modeling of Lipids and Lipid Bilayers. European Biophysics Journal, 35, 53-61. https://doi.org/10.1007/s00249-005-0005-y
|
[95]
|
Keener, T.J., Stuart, R.K. and Brown, T.K. (2004) Maleated Coupling Agents for Natural Fibre Composites. Composite Part A, 35, 357-362.
https://doi.org/10.1016/j.compositesa.2003.09.014
|
[96]
|
Li, Q. and Matuana, L.M. (2003) Effectiveness of Maleated and Acrylic Acid-Functionalized Polyolefin Coupling Agents for HDPE-Wood-Flour Composites. Journal of Thermoplastic Composite Materials, 16, 551-564.
https://doi.org/10.1177/089270503033340
|
[97]
|
Lu, J.Z., Wu, Q. and Negulescu, H. (2000) The Influence of Maleation on Polymer Adsorption and Fixation, Wood Surface Wettability, and Interfacial Bonding Strength in Wood-PVC Composites. Wood and Fiber Science, 34, 434-459.
|
[98]
|
Wang, Y.E.H., Yeh, F.C., Lai, S.M., Chan, H.C. and Shen, H.F. (2003) Effectiveness of Functionalized Polyolefins as Compatibilizers for Polyethylene/Wood Flour Composites. Polymer Engineering & Science, 43, 933-945.
https://doi.org/10.1002/pen.10077
|
[99]
|
Balasuriya, P.W., Ye, L., Mai, Y.W. and Wu, J. (2002) Mechanical Properties of Wood Flake-Polyethylene Composites II. Interface Modification. Journal of Applied Polymer Science, 83, 2505-2521. https://doi.org/10.1002/app.10189
|
[100]
|
Tsuzuki, H., Branicio, P.S. and Rino, J.P. (2007) Structural Characterization of Deformed Crystals by Analysis of Common Atomic Neighborhood. Computer Physics Communications, 177, 518-523. https://doi.org/10.1016/j.cpc.2007.05.018
|
[101]
|
Sankaranarayanan, S.K.R.S., Bhethanabotla, V.R. and Joseph, B. (2005) Molecular Dynamics Simulation Study of the Melting of Pd-Pt Nanoclusters. Physical Review B, 71, Article ID: 195415. https://doi.org/10.1103/PhysRevB.71.195415
|
[102]
|
Honeycutt, J.D. and Andersen, H.C. (1987) Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters. The Journal of Physical Chemistry, 91, 4950-4963. https://doi.org/10.1021/j100303a014
|