|
[1]
|
Gibb, A. and Deeks, D. (2014) Vortioxetine: First Global Approval. Drugs, 74, 135-145. [CrossRef] [PubMed]
|
|
[2]
|
Agostino, A., English, C. and Rey, J. (2015) Vortioxetine (Brintel-lix): A New Serotonergic Antidepressant. P & T, 40, 36-40.
|
|
[3]
|
Areberg, J., Petersen, K., Chen, G. and Naik, H. (2014) Population Pharmacokinetic Meta-Analysis of Vortioxetine in Healthy Individuals. Basic & Clinical Pharmacology and Toxicology, 115, 552-559. [CrossRef] [PubMed]
|
|
[4]
|
Alam, M., Jacobsen, P., Chen, Y., Serenko, M. and Mahableshwarkar, A. (2014) Safety, Tolerability, and Efficacy of Vortioxetine (Lu AA21004) in Major Depressive Disorder: Results of an Open-Label, Flexible-Dose, 52-Week Extension Study. International Clinical Psychopharmacology, 29, 36-44. [CrossRef]
|
|
[5]
|
Buchbjerg, J., Hojer, A., Jensen, K. and Sogaard, B. (2009) Assessment of the CYP2C19 Interaction Potential of Lu Aa21004. The Journal of Clinical Pharmacology, 49, 1119-1125.
|
|
[6]
|
Chen, G., Zhang, W. and Serenko, M. (2015) Lack of Effect of Multiple Doses of Vortioxetine on the Pharmacokinetics and Pharmacodynamics of Aspirin and Warfarin. The Journal of Clinical Pharmacology, 55, 671-679. [CrossRef] [PubMed]
|
|
[7]
|
Chen, G., Wang, Y. and Nomikos, G. (2011) Effects of Multiple Doses of Lu AA21004 on the Single-Dose Pharmacokinetics and Pharmacodynamics of Diazepam. The Journal of Clinical Pharmacology, 51, 1350-1350.
|
|
[8]
|
Chen, G., Lee, R., Hojer, A., Buchbjerg, J., Serenko, M. and Zhao, Z. (2013) Pharmacokinetic Drug Interactions Involving Vortioxetine (Lu AA21004), a Multimodal Antidepressant. Clinical Drug Investigation, 33, 727-736. [CrossRef] [PubMed]
|
|
[9]
|
Kroeze, Y., Peeters, D., Boulle, F., Hove, D., Bokhoven, H., Zhou, H., et al. (2015) Long-Term Consequences of Chronic Fluoxetine Exposure on the Expression of Myelination-Related Genes in the Rat Hippocampus. Translational Psychiatry, 5, 642-663. [CrossRef] [PubMed]
|
|
[10]
|
Wenthur, C., Bennett, M. and Lindsley, C. (2014) Classics in Chemical Neuroscience: Fluoxetine (Prozac). ACS Chemical Neuroscience, 5, 14-23. [Google Scholar] [CrossRef]
|
|
[11]
|
Bibi, Z. (2014) Role of Cytochrome P450 in Drug Interactions. Nutrition & Metabolism, 11, 11-29. [CrossRef] [PubMed]
|
|
[12]
|
Donato, M. and Castell, J. (2003) Strategies and Molecular Probes to Investigate the Role of Cytochrome P450 in Drug Metabolism: Focus on in Vitro Studies. Clinical Pharmacokinetics, 42, 153-178. [CrossRef] [PubMed]
|
|
[13]
|
Hisaka, A., Kusama, M., Ohno, Y., Sugiyama, Y. and Suzuki, H. (2009) A Proposal for a Pharmacokinetic Interaction Significance Classification System (PISCS) Based on Predicted Drug Exposure Changes and Its Potential Application to Alert Classifications in Product Labeling. Clinical Pharmacokinetics, 48, 653-666. [CrossRef] [PubMed]
|
|
[14]
|
Hieronymus, F., Nilsson, S. and Eriksson, E. (2018) Efficacy of Selective Serotonin Reuptake Inhibitors in the Absence of Side Effects: A Mega-Analysis of Citalopram and Paroxetine in Adult Depression. Molecular Psychiatry, 23, 1731-1736. [CrossRef] [PubMed]
|
|
[15]
|
Wroblewski, K., Perruczynik, A., Buszewski, B., Szultka, M., Karakula, H. and Waksmundzka, M. (2017) Determination of Vortioxetine in Human Serum and Saliva Samples by HPLC-DAD and HPLC-MS. Acta Chromatographica, 29, 325-344. [CrossRef]
|
|
[16]
|
Douša, M., Doubský, J. and Srbek, J. (2016) Utilization of Photochemically Induced Fluorescence Detection for HPLC Determination of Genotoxic Impurities in the Vortioxetine Manufacturing Process. Journal of Chromatographic Science, 54, 1625-1630. [CrossRef] [PubMed]
|
|
[17]
|
Liu, L., Cao, N., Ma, X., Xiong, K., Sun, L., Zou, Q., et al. (2016) Stability-Indicating Reversed-Phase HPLC Method Development and Characterization of Impurities in Vortioxetine Utilizing LC-MS, IR and NMR. Journal of Pharmaceutical and Biomedical Analysis, 117, 325-332. [CrossRef] [PubMed]
|
|
[18]
|
Qin, M., Qiao, H., Yuan, Y. and Shao, Q. (2018) A Quantitative LC-MS/MS Method for Simultaneous Determination of Deuvortioxetine, Vortioxetine and Their Carboxylic Acid Metabolite in Rat Plasma, and Its Application to a Toxicokinetic Study. Analytical Methods, 9, 1-9. [CrossRef]
|
|
[19]
|
Huang, Y., Zheng, S., Pan, Y., Li, T., Xu, Z. and Shao, M. (2016) Simultaneous Quantification of Vortioxetine, Carvedilol and Its Active Metabolite 4-Hydroxyphenyl Carvedilol in Rat Plasma by UPLC-MS/MS: Application to Their Pharmacokinetic Interaction Study. Journal of Pharmaceutical and Biomedical Analysis, 128, 184-190. [CrossRef] [PubMed]
|
|
[20]
|
Gu, E.M., et al. (2015) An UPLC-MS/MS Method for the Quantitation of Vortioxetine in Rat Plasma: Application to a Pharmacokinetic Study. Journal of Chromatography B, 997, 70-74. [CrossRef] [PubMed]
|
|
[21]
|
Kall, A., Rohde, M. and Jorgensen, M. (2015) Quantitative Determination of the Antidepressant Vortioxetine and Its Major Human Metabolite in Plasma. Bioanalysis, 7, 2881-2894. [CrossRef] [PubMed]
|
|
[22]
|
Tuchila, C., Negrei, C., Stan, M., Vlasceanu, A. and Baconi, B. (2015) HPLC-FL Method for Fluoxetine Quantification in Human Plasma. Romanian Journal CBT and Hypnosis, 2, 19-30.
|
|
[23]
|
Sabbioni, C., Bugamelli, F., Varani, G., Mercolini, L., Musenga, A., Saracino, M., et al. (2004) A Rapid HPLC-DAD Method for the Analysis of Fluoxetine and Norfluoxetine in Plasma from Overdose Patients. Journal of Pharmaceutical and Biomedical Analysis, 36, 351-356. [CrossRef] [PubMed]
|
|
[24]
|
Raggi, M., Mandrioli, R., Casamenti, G., Volterra, V., Desiderio, C. and Fanali, S. (1999) Improved HPLC Determination of Fluoxetine and Norfluoxetine in Human Plasma. Chromatographia, 50, 423-427. [CrossRef]
|
|
[25]
|
Mishra, P., Gong, Z. and Kelly, B. (2017) Assessing Biological Effects of Fluoxetine in Developing Zebrafish Embryos Using Gas Chromatography-Mass Spectrometry Based Metabolomics. Chemosphere, 188, 157-167. [CrossRef] [PubMed]
|
|
[26]
|
Fernandes, C., Van Hoeck, E., Sandra, P. and Lanças, F. (2008) Determination of Fluoxetine in Plasma by Gas Chromatography-Mass Spectrometry Using Stir Bar Sorptive Extraction. Analytica Chimica Acta, 714, 201-207. [CrossRef] [PubMed]
|
|
[27]
|
Silva, A., Raasch, J., Vargas, T., Peteffi, G., Hahn, R., Antunes, M., et al. (2017) Simultaneous Determination of Fluoxetine and Norfluoxetine in Dried Blood Spots Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Clinical Biochemistry, 52, 85-93. [CrossRef] [PubMed]
|
|
[28]
|
Ezzeldin, E., Abo-Tlib, N. and Tammam, M. (2017) UPLC-Tandem Mass Spectrometry Method for Simultaneous Determination of Fluoxetine, Risperidone, and Its Active Metabolite 9-Hydroxyrisperidone in Plasma: Application to Pharmacokinetics Study in Rats. Journal of Analytical Methods in Chemistry, 2017, Article ID: 5187084. [CrossRef] [PubMed]
|
|
[29]
|
Pan, P., Wang, S., Wan, J., Luo, J., Geng, P., Zhou, Y., et al. (2016) Simultaneous Determination of Methadone, Fluoxetine, Venlafaxine and Their Metabolites in Rat Plasma by UPLC-MS/MS for Drug Interaction Study. Chromatographia, 79, 601-608. [CrossRef]
|
|
[30]
|
Qiu, X., Wang, H., Yuan, Y., Wang, Y., Sun, M. and Huang, X. (2015) An UPLC-MS/MS Method for the Analysis of Glimepiride and Fluoxetine in Human Plasma. Journal of Chromatography B, 980, 16-19. [CrossRef] [PubMed]
|
|
[31]
|
Alegete, P., Kancherla, P., Albaseer, S. and Boodida, S. (2014) A Fast and Reliable LC-MS/MS Method for Simultaneous Quantitation of Fluoxetine and Mirtazapine in Human Plasma. Analytical Methods, 18, 7407-7414. [CrossRef]
|
|
[32]
|
Bonde, S.L., Bhadane, R.P., Gaikwad, A., Gavali, S.R., Katale, D.U. and Narendiran, A.S. (2014) Simultaneous Determination of Olanzapine and Fluoxetine in Human Plasma by LC-MS/MS and Its Application to Pharmacokinetic Study. Journal of Pharmaceutical and Biomedical Analysis, 90, 64-71. [CrossRef] [PubMed]
|
|
[33]
|
Polson, C., Sarkar, P., Incledon, B., Raguvaran, V. and Grant, R. (2003) Optimization of Protein Precipitation Based upon Effectiveness of Protein Removal and Ionization Effect in Liquid Chromatography-Tandem Mass Spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 785, 263-275. [CrossRef]
|
|
[34]
|
Committee for the Purpose of Control and Supervision on Experiments on Animals (2003) CPCSEA Guidelines for Laboratory Animal Facility. Indian Journal of Pharmacology, 35, 257-274.
|
|
[35]
|
National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20892. https://www.nih.gov/health-information/nih-clinical-research-trials-you/basics
|
|
[36]
|
US Food and Drug Administration, Center for Drug Evaluation and Research (CDER) (2001) Guidance for Industry-Bioanalytical Method Validation. Department of Health and Human Services, Rockville.
|
|
[37]
|
Hvenegaard, M., Bang-Andersen, B., Pedersen, H., Jorgensen, M., Puschl, A. and Dalgaard, L. (2012) Identification of the Cytochrome P450 and Other Enzymes Involved in the in Vitro Oxidative Metabolism of a Novel Antidepressant, Lu AA21004. Drug Metabolism and Disposition, 40, 1357-1365. [CrossRef] [PubMed]
|
|
[38]
|
Spina, E., Santoro, V. and Arrigo, C. (2008) Clinically Relevant Pharmacokinetic Drug Interactions with Second-Generation Antidepressants: An Update. Clinical Therapeutics, 30, 1206-1207. [CrossRef]
|
|
[39]
|
Chen, G., Lee, R., Højer, A., Buchbjerg, J., Serenko, M. and Zhao, Z. (2013) Pharmacokinetic Drug Interactions Involving Vortioxetine (Lu AA21004), a Multimodal Antidepressant. Clinical Drug Investigation, 33, 727-736. [CrossRef] [PubMed]
|
|
[40]
|
Lutz, J., Vanden Brink, B., Babu, K., Nelson, W., Kunze, K. and Isoherranen, N. (2013) Stereoselective Inhibition of CYP2C19 and CYP3A4 by Fluoxetine and Its Metabolite: Implications for Risk Assessment of Multiple Time-Dependent Inhibitor Systems. Drug Metabolism and Disposition, 41, 2056-2065. [CrossRef] [PubMed]
|
|
[41]
|
Hemeryck, A. and Belpaire, F. (2002) Selective Serotonin Reuptake Inhibitors and Cytochrome P-450 Mediated Drug-Drug Interactions: An Update. Current Drug Metabolism, 3, 13-37. [CrossRef] [PubMed]
|
|
[42]
|
Mandrioli, R., Forti, G. and Raggi, M. (2006) Fluoxetine Metabolism and Pharmacological Interactions: The Role of Cytochrome p450. Current Drug Metabolism, 7, 127-133. [CrossRef] [PubMed]
|
|
[43]
|
Sager, J., Lutz, J., Foti, R., Davis, C., Kunze, K. and Isoherranen, N. (2014) Fluoxetine and Norfluoxetine Mediated Complex Drug-Drug Interactions: In Vitro to in Vivo Correlation of Effects on CYP2D6, CYP2C19 and CYP3A4. Clinical Pharmacology, 95, 653-662. [CrossRef] [PubMed]
|
|
[44]
|
Chen, G., Hojer, A., Areberg, A. and Nomikos, G. (2018) Vortioxetine: Clinical Pharmacokinetics and Drug Interactions. Clinical Pharmacokinetics, 57, 673-686. [CrossRef] [PubMed]
|
|
[45]
|
Findling, R., Robb, A., DelBello, M., Huss, M., McNamara, N., Sarkis, E., et al. (2017) Pharmacokinetics and Safety of Vortioxetine in Pediatric Patients. Journal of Child and Adolescent Psychopharmacology, 27, 526-534. [CrossRef] [PubMed]
|
|
[46]
|
Chen, G., Nomikos, G., Affinito, J. and Zhao, Z. (2016) Lack of Effect of Vortioxetine on the Pharmacokinetics and Pharmacodynamics of Ethanol, Diazepam, and Lithium. Clinical Pharmacokinetics, 55, 1115-1127. [CrossRef] [PubMed]
|
|
[47]
|
Sawyera, E. and Howell, L. (2011) Pharmacokinetics of Fluoxetine in Rhesus Macaques Following Multiple Routes of Administration. Pharmacology, 88, 44-49. [CrossRef] [PubMed]
|
|
[48]
|
Hodes, G., Hill-Smith, T., Suckow, R., Cooper, T. and Lucki, I. (2010) Sex-Specific Effects of Chronic Fluoxetine Treatment on Neuroplasticity and Pharmacokinetics in Mice. Journal of Pharmacology and Experimental Therapeutics, 332, 266-273. [CrossRef] [PubMed]
|
|
[49]
|
Qu, Y., Aluisio, L., Lord, B., Boggs, J., Hoey, K. and Mazur, C. (2009) Pharmacokinetics and Pharmacodynamics of Norfluoxetine in Rats: Increasing Extracellular Serotonin Level in the Frontal Cortex. Pharmacology Biochemistry and Behavior, 92, 469-473. [CrossRef] [PubMed]
|
|
[50]
|
Haduch, A., Wojcikowski, J. and Daniel, W. (2008) Effect of Selected Antidepressant Drugs on Cytochrome p450 2b (cyp2b) in Rat Liver: An in Vitro and in Vivo Study. Pharmacological Reports, 60, 957-965.
|
|
[51]
|
Martin, K., Michael, K., Igor, O., Igor, H., Ingrid, T. and Juraj, M. (2020) Simultaneous Determination of Fluoxetine, Venlafaxine, Vortioxetine and Their Active Metabolites in Human Plasma by LC-MS/MS Using One-Step Sample Preparation Procedure. Journal of Pharmaceutical and Biomedical Analysis, 181, Article ID: 113098. [CrossRef] [PubMed]
|