[1]
|
Li, X., Yang, Z., Fu, Y., Qiao, L., Li, D., Yue, H. and He, D. (2015) Germanium Anode with Excellent Lithium Storage Performance in a Germanium/Lithium-Cobalt Oxide Lithium-Ion Battery. ACS Nano, 9, 1858-1867.
https://doi.org/10.1021/nn506760p
|
[2]
|
Zubi, G., Dufo-López, R., Carvalho, M. and Pasaoglu, G. (2018) The Lithium-Ion Battery: State of the Art and Future Perspectives. Renewable and Sustainable Energy Reviews, 89, 292-308. https://doi.org/10.1016/j.rser.2018.03.002
|
[3]
|
Yoshino, A. (2012) The Birth of the Lithium-Ion Battery. Angewandte Chemie International Edition, 51, 5798-5800. https://doi.org/10.1002/anie.201105006
|
[4]
|
Whittingham, M.S. (2004) Lithium Batteries and Cathode Materials. Chemical Reviews, 104, 4271-4302. https://doi.org/10.1021/cr020731c
|
[5]
|
Goodenough, J.B. and Kim, Y. (2010) Challenges for Rechargeable Li Batteries. Chemistry of Materials, 22, 587-603. https://doi.org/10.1021/cm901452z
|
[6]
|
Schmid, R. and Pillot, C. (2014) Introduction to Energy Storage with Market Analysis and Outlook. AIP Conference Proceedings, 1597, 3-13.
https://doi.org/10.1063/1.4878476
|
[7]
|
Lee, J.I., Lee, E.H., Park, J.H., Park, S. and Lee, S.Y. (2014) Ultrahigh-Energy-Density Lithium-Ion Batteries Based on a High-Capacity Anode and a High-Voltage Cathode with an Electroconductive Nanoparticle Shell. Advanced Energy Materials, 4, 1301542. https://doi.org/10.1002/aenm.201301542
|
[8]
|
Kalluri, S., Yoon, M., Jo, M., Park, S., Myeong, S., Kim, J., Dou, S.X., Guo, Z. and Cho, J. (2017) Surface Engineering Strategies of Layered LiCoO2 Cathode Material to Realize High-Energy and High-Voltage Li-Ion Cells. Advanced Energy Materials, 7, 1601507. https://doi.org/10.1002/aenm.201601507
|
[9]
|
Chen, Z., Lu, Z. and Dahn, J.R. (2002) Staging phase transitions in LixCoO2. Journal of the Electrochemical Society, 149, A1604-A1609.
https://doi.org/10.1149/1.1519850
|
[10]
|
Van der Ven, A., Aydinol, M.K., Ceder, G., Kresse, G. and Hafner, J. (1998) First-Principles Investigation of Phase Stability in LixCoO2. Physical Review B, 58, 2975. https://doi.org/10.1103/PhysRevB.58.2975
|
[11]
|
Hausbrand, R., Cherkashinin, G., Ehrenberg, H., Gröting, M., Albe, K., Hess, C. and Jaegermann, W. (2015) Fundamental Degradation Mechanisms of Layered Oxide Li-Ion Battery Cathode Materials: Methodology, Insights and Novel Approaches. Materials Science and Engineering: B, 192, 3-25.
https://doi.org/10.1016/j.mseb.2014.11.014
|
[12]
|
Reimers, J.N. and Dahn, J.R. (1992) Electrochemical and in Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2. Journal of the Electrochemical Society, 139, 2091-2097. https://doi.org/10.1149/1.2221184
|
[13]
|
Ohzuku, T. and Ueda, A. (1994) Solid-State Redox Reactions of LiCoO2 (R3m) for 4 Volt Secondary Lithium Cells. Journal of the Electrochemical Society, 141, 2972.
https://doi.org/10.1149/1.2059267
|
[14]
|
Ménétrier, M., Saadoune, I., Levasseur, S. and Delmas, C. (1999) The Insulator-Metal Transition upon Lithium Deintercalation from LiCoO2: Electronic Properties and 7Li NMR Study. Journal of Materials Chemistry, 9, 1135-1140.
https://doi.org/10.1039/a900016j
|
[15]
|
Molenda, J., Stoklosa, A. and Bak, T. (1989) Modification in the Electronic Structure of Cobalt Bronze LixCoO2 and the Resulting Electrochemical Properties. Solid State Ionics, 36, 53-58. https://doi.org/10.1016/0167-2738(89)90058-1
|
[16]
|
Van der Ven, A., Aydinol, M.K. and Ceder, G. (1998) First-Principles Evidence for Stage Ordering in LixCoO2. Journal of the Electrochemical Society, 145, 2149.
https://doi.org/10.1149/1.1838610
|
[17]
|
Amatucci, G.G., Tarascon, J.M. and Klein, L.C. (1996) CoO2, the End Member of the LixCoO2 Solid Solution. Journal of the Electrochemical Society, 143, 1114.
https://doi.org/10.1149/1.1836594
|
[18]
|
Radin, M.D., Hy, S., Sina, M., Fang, C., Liu, H., Vinckeviciute, J., Zhang, M., Whittingham, M.S., Meng, Y.S. and Van der Ven, A. (2017) Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials. Advanced Energy Materials, 7, 1602888. https://doi.org/10.1002/aenm.201602888
|
[19]
|
Kim, J., Fulmer, P. and Manthiram, A. (1999) Synthesis of LiCoO2 cathodes by an oxidation reaction in solution and their electrochemical properties. Materials research bulletin, 34, 571-579. https://doi.org/10.1016/S0025-5408(99)00049-5
|
[20]
|
Yoshio, M., Tanaka, H., Tominaga, K. and Noguchi, H. (1992) Synthesis of LiCoO2 from Cobalt Organic Acid Complexes and Its Electrode Behaviour in a Lithium Secondary Battery. Journal of Power Sources, 40, 347-353.
https://doi.org/10.1016/0378-7753(92)80023-5
|
[21]
|
Oh, I.-H., Hong, S.-A. and Sun, Y.-K. (1997) Low-Temperature Preparation of Ultrafine LiCoO2 Powders by the Sol-Gel Method. Journal of Materials Science, 32, 3177-3182. https://doi.org/10.1023/A:1018650717723
|
[22]
|
Peng, Z.S., Wan, C.R. and Jiang, C.Y. (1998) Synthesis by Sol-Gel Process and Characterization of LiCoO2 Cathode Materials. Journal of Power Sources, 72, 215-220.
https://doi.org/10.1016/S0378-7753(97)02689-X
|
[23]
|
Burukhin, A., Brylev, O., Hany, P. and Churagulov, B.R. (2002) Hydrothermal Synthesis of LiCoO2 for Lithium Rechargeable Batteries. Solid State Ionics, 151, 259-263.
https://doi.org/10.1016/S0167-2738(02)00721-X
|
[24]
|
Lu, C.H. and Wang, H.C. (2003) Synthesis of Nano-Sized LiNi0.8Co0.2O2 via a Reverse Microemulsion Route. Journal of Materials Chemistry, 13, 428-431.
https://doi.org/10.1039/b204394g
|
[25]
|
Chen, C.H., Kelder, E.M. and Schoonman, J. (1996) Unique Porous LiCoO2 Thin Layers Prepared by Electrostatic Spray Deposition. Journal of Materials Science, 31, 5437-5442. https://doi.org/10.1007/BF01159314
|
[26]
|
Kumta, P.N., Gallet, D., Waghray, A., Blomgren, G.E. and Setter, M.P. (1998) Synthesis of LiCoO2 Powders for Lithium-Ion Batteries from Precursors Derived by Rotary Evaporation. Journal of Power Sources, 72, 91-98.
https://doi.org/10.1016/S0378-7753(97)02680-3
|
[27]
|
Xie, J., Zhao, J., Liu, Y., Wang, H., Liu, C., Wu, T., Hsu, P.-C., Lin, D., Jin, Y. and Cui, Y. (2017) Engineering the Surface of LiCoO2 Electrodes Using Atomic Layer Deposition for Stable High-Voltage Lithium Ion Batteries. Nano Research, 10, 3754-3764. https://doi.org/10.1007/s12274-017-1588-1
|
[28]
|
Julien, C. (2000) Local Cationic Environment in Lithium Nickel-Cobalt Oxides Used as Cathode Materials for Lithium Batteries. Solid State Ionics, 136, 887-896.
https://doi.org/10.1016/S0167-2738(00)00503-8
|
[29]
|
Julien, C. (2003) Local Structure and Electrochemistry of Lithium Cobalt Oxides and Their Doped Compounds. Solid State Ionics, 157, 57-71.
https://doi.org/10.1016/S0167-2738(02)00190-X
|
[30]
|
Ceder, G. and Aydinol, M.K. (1998) The Electrochemical Stability of Lithium-Metal Oxides against Metal Reduction. Solid State Ionics, 109, 151-157.
https://doi.org/10.1016/S0167-2738(98)00090-3
|
[31]
|
Choi, S. and Manthiram, A. (2002) Chemical Synthesis and Properties of Spinel Li1−xCo2O4−δ. Journal of Solid State Chemistry, 164, 332-338.
https://doi.org/10.1006/jssc.2001.9480
|
[32]
|
Kalyani, P., Kalaiselvi, N. and Muniyandi, N. (2002) A New Solution Combustion Route to Synthesize LiCoO2 and LiMn2O4. Journal of Power Sources, 111, 232-238.
https://doi.org/10.1016/S0378-7753(02)00307-5
|
[33]
|
Huang, W. and Frech, R. (1996) Vibrational Spectroscopic and Electrochemical Studies of the Low and High Temperature Phases of LiCo1−xMxO2 (M = Ni or Ti). Solid State Ionics, 88-89, 395-400. https://doi.org/10.1016/0167-2738(96)00158-0
|
[34]
|
Burba, C.M., Shaju, K.M., Bruce, P.G. and Frech, R. (2009) Infrared and Raman Spectroscopy of Nanostructured LT-LiCoO2 Cathodes for Li-Ion Rechargeable Batteries. Vibrational Spectroscopy, 51, 248-250.
https://doi.org/10.1016/j.vibspec.2009.06.002
|
[35]
|
Islam, K.H., Zuki, A.B.Z., Ali, M.E., Hussein, B., Zobir, M., Noordin, M.M., Loqman, M.Y., Wahid, H., Hakim, M.A., Hamid, A. and Bee, S. (2012) Facile Synthesis of Calcium Carbonate Nanoparticles from Cockle Shells. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/534010
|
[36]
|
Ghosh, P., Mahanty, S., Raja, M.W., Basu, R.N. and Maiti, H.S. (2007) Structure and Optical Absorption of Combustion-Synthesized Nanocrystalline LiCoO2. Journal of Materials Research, 22, 1162-1167. https://doi.org/10.1557/jmr.2007.0157
|
[37]
|
JCPDS Reference Code. 01-078-3137.
|
[38]
|
Gao, W., Zhang, X., Zheng, X., Lin, X., Cao, H., Zhang, Y. and Sun, Z. (2017) Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process. Environmental Science & Technology, 51, 1662-1669.
https://doi.org/10.1021/acs.est.6b03320
|
[39]
|
Prabaharan, D.D.M., Sadaiyandi, K., Mahendran, M. and Sagadevan, S. (2017) Precipitation Method and Characterization of Cobalt Oxide Nanoparticles. Applied Physics A, 23, Article No.: 264. https://doi.org/10.1007/s00339-017-0786-8
|
[40]
|
Madhavi, S., Rao, G.S., Chowdari, B.V.R. and Li, S.F.Y. (2002) Effect of Cr Dopant on the Cathodic Behavior of LiCoO2. Electrochimicaacta, 48, 219-226.
https://doi.org/10.1016/S0013-4686(02)00594-7
|
[41]
|
Zhong, Y.D., Zhao, X.B., Cao, G.S., Tu, J.P. and Zhu, T.J. (2006) Characterization of Particulate Sol-Gel Synthesis of LiNi0.8Co0.2O2 via Maleic Acid Assistance with Different Solvents. Journal of Alloys and Compounds, 420, 298-305.
https://doi.org/10.1016/j.jallcom.2005.10.052
|
[42]
|
Cullity, BD. and Stock SR. (2001) Elements of X-Ray Diffraction. 3rd Edition, Prentice Hall, Upper Saddle River.
|
[43]
|
Akimoto, J., Gotoh, Y. andOosawa, Y. (1998) Synthesis and Structure Refinement of LiCoO2 Single Crystals. Journal of Solid State Chemistry, 141, 298-302.
https://doi.org/10.1006/jssc.1998.7966
|
[44]
|
Mehl, M.J., Hicks, D., Toher, C., Levy, O., Hanson, R.M., Hart, G. and Curtarolo, S. (2017) The AFLOW Library of Crystallographic Prototypes: Part 1. Computational Materials Science, 136, S1-S828. https://doi.org/10.1016/j.commatsci.2017.01.017
|
[45]
|
Konstantinov, K., Wang, G.X., Yao, J., Liu, H.K. and Dou, S.X. (2003) Stoichiometry-Controlled High-Performance LiCoO2 Electrode Materials Prepared by a Spray Solution Technique. Journal of Power Sources, 119,195-200.
https://doi.org/10.1016/S0378-7753(03)00178-2
|
[46]
|
Graetz, J., Hightower, A., Ahn, C.C., Yazami, R., Rez, P. and Fultz, B. (2002) Electronic Structure of Chemically-Delithiated LiCoO2 Studied by Electron Energy-Loss Spectrometry. The Journal of Physical Chemistry, 106, 1286-1289.
https://doi.org/10.1021/jp0133283
|
[47]
|
Van Elp, J., Wieland, J.L., Eskes, H., Kuiper, P., Sawatzky, G.A., De Groot, F.M.F. and Turner, T.S. (1991) Electronic Structure of CoO, Li-Doped CoO, and LiCoO2. Physical Review B, 44, 6090. https://doi.org/10.1103/PhysRevB.44.6090
|
[48]
|
De Groot, F.M.F., Abbate, M., Van Elp, J., Sawatzky, G.A., Ma, Y.J., Chen, C.T. and Sette, F. (1993) Oxygen 1s and Cobalt 2p X-Ray Absorption of Cobalt Oxides. Journal of Physics: Condensed Matter, 5, 2277. https://doi.org/10.1088/0953-8984/5/14/023
|
[49]
|
Kushida, K. and Kuriyama, K. (2002) Narrowing of the Co-3d Band Related to the Order-Disorder Phase Transition in LiCoO2. Solid State Communications, 123, 349-352. https://doi.org/10.1016/S0038-1098(02)00325-3
|
[50]
|
Czyzyk, M.T., Potze, R. and Sawatzky, G.A. (1992) Band-Theory Description of High-Energy Spectroscopy and the Electronic Structure of LiCoO2. Physical Review B, 46, 3729. https://doi.org/10.1103/PhysRevB.46.3729
|
[51]
|
Kashyout, A.B., Soliman, M., El Gamal, M. and Fathy, M. (2005) Preparation and Characterization of Nano Particles ZnO Films for Dye-Sensitized Solar Cells. Materials Chemistry and Physics, 90, 230-233.
https://doi.org/10.1016/j.matchemphys.2004.11.031
|