Fabrication of two-dimensional periodic TiO2 pillar arrays by multi-beam laser interference lithography
Hiroyo Segawa, Hiroaki Misawa
DOI: 10.4236/ns.2009.13022   PDF    HTML     5,550 Downloads   10,541 Views   Citations


Two-dimensional (2D) periodic TiO2 pillar arrays, applicable to photonic crystals and micro-channels, were fabricated by direct patterning of a TiO2-organic hybrid material by multi-beam laser interference lithography and calcination of hybrid patterns. 2D periodic pillars of a TiO2– organic hybrid material were prepared by irra-diation with the interference pattern of femto-second laser beams and removal of the non- irradiated portions. Two types of periodic pillar arrays, standing pillars and top-gathering pillars (four pillars gathered at the top), were obtained, depending on laser irradiation conditions. After calcination of TiO2–organic hybrid pillars, TiO2 pillar arrays were obtained without collapse.

Share and Cite:

Segawa, H. and Misawa, H. (2009) Fabrication of two-dimensional periodic TiO2 pillar arrays by multi-beam laser interference lithography. Natural Science, 1, 176-180. doi: 10.4236/ns.2009.13022.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. P. Herzig (1997), Micro-optics. Taylor & Francis, Ltd., London, UK.
[2] J. D. Joannapoulos, R. D. Meade, and J. N. Winn, Photonic crystals.Princeton University Press, Princeton, NJ, 1995.
[3] E. Yablonovitch, (1993) Photonic band-gap structures. J. Opt. Soc. Am. B, 10283-295.
[4] W. D. Volkmuth and R. H. Austin, (1992) DNA electro-phoresis in microlithographic arrays. Nature, 358, 600- 602.
[5] N. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishi-moto, H. Nakanishi, Y. Horiike, and Y. Baba, (2004) Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. Anal. Chem., 76, 15-22.
[6] H. Segawa, Y. Yamazaki, T. Yano, and S. Shibata, (2006) Top-gathering periodic array derived from self-organi-zation of hybrid organic-inorganic pillars. Jpn. J. Ceram. Soc., 114, 120-124.
[7] H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and H. Misawa, (2006) Top-gathering pillar ar-ray of hybrid organic-inorganic material by means of self-organization. Appl. Phys. A, 83, 447-451.
[8] H. Krug, F. Tiefence, P. W. Oliveira, and H. Schmidt, (1992) Organic-inorganic composite materials: Optical properties of laser-patterned and protective-coated wave- guides. SPIE, 1758, 448-455.
[9] H. Schmidt, J. Krug, R. Kasemann, and F. Tiefensee, (1991) Devel opment of optical wave guides by sol-gel techniques for laser patterning. SPIE, 1590, 36-43.
[10] S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, and M. A. Fardad, (1998) Sol-gel glass waveguide and grating on silicon. J. Lightwave Tech., 16, 1640-1646.
[11] H. J. Jiang, X. C. Yuan, Y. Zhou, Y. C. Chan, and Y. L. Lam, (2000) Single-step fabrication of diffraction grat-ings on hybrid sol-gel glass using holographic interfer-ence lithography. Opt. Commun., 185 19-24.
[12] H. Segawa, S. Adachi, Y. Arai, and K. Yoshida, (2003) Fine patterning of hybrid titania films by ultraviolet irra-diation. J. Am. Ceram. Soc., 86, 761-64.
[13] H. Segawa, H. Misawa, and S. Matsuo, (2004) Fabrica-tion of fine-pitch TiO2-organic hybrid dot arrays using multiphoton absorption of femstosecond pulses. Appl. Phys. A, 79, 407-409.
[14] H. Segawa, N. Abrams, T. E. Mallouk, I. Divliansky, and T. S. Mayer, (2006) Fabrication of TiO2-Organic hybrid dot arrays using nanosecond laser interference lithogra-phy. J. Am. Ceram Soc., 89, 3507-3510.
[15] T. Kondo, S. Juodkazis, V. Vygantas, and H. Misawa, (2006) Holographic lithography of periodic two- and three- dimensional microstructures in photoresist SU-8. Opt. Exp., 14, 7943-7953.
[16] J. Xing, X. Dong, W. Chen, X. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, (2007) Improving spatial resolu-tion of two-photo microfabrication by using photoinitia-tor. Appl. Phys. Lett., 80, 131106.
[17] T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, (2001) Femtosecond laser interference technique with diffractive beam splitter for fabrication of threedimen-sional photonic crystals. Appl. Phys. Lett., 79, 725.
[18] J. N. Israelachvili, (1992) Intermolecular and surface forces. Academic Press Ltd., London, 2nd ed..
[19] (1984) JSME mechanical engineers’ handbook, A4: Strength of materials. Japan Society of Mechanical En-gineers, Tokyo.
[20] D. R. Lide ed., (1998) CRC handbook of chemistry and physics, 82th Ed., CRC Press Inc., Boca Raton, Florida.
[21] K. Kintaka, J. Nishii, and N. Tohge, (2000) Diffraction gratings of photosensitive ZrO2 gel films fabricated with the two ultraviolet beam interference method, Appl.Opt., 39, 489-493.
[22] N. Tohge and Y. Takama, (1999) Direct fine-patterning of PZT thin films using photosensitive gel films derived from chemically modified metal alkoxides. J. Mater. Sci.: Mater. Electron., 10, 273-277.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.