Molecular dynamics simulation of the interaction of ethanol-water mixture with a Pt surface

DOI: 10.4236/ns.2011.312126   PDF   HTML     6,215 Downloads   13,031 Views   Citations


An analysis of the molecular dynamics of ethanol solvated by water molecules in the absence and presence of a Pt surface has been performed using DL_POLY_2.19 code. The structure and diffusion properties of an ethanol–water system have been studied at various temperatures from 250 to 600 K. We have measured the self-diffusion coefficients of the 50:50% ethanol–water solution; in the absence of a Pt surface our results show an excellent agreement–within an error of 7.4% – with the experimental data. An increase in the self-diffusion coefficients with the inclusion of a Pt surface has been observed. The estimation of the diffusion coefficients of both water and ethanol in the presence of a Pt surface shows that they obey the Arrhenius equation; the calculated activation energies of diffusion of ethanol and water are 2.47 and 2.98 Kcal/mole, respectively. The radial distribution function graphs and density profiles have been built; their correlations with the self-diffusion coefficients of both ethanol and water molecules are also illustrated.

Share and Cite:

Kholmurodov, K. , Dushanov, E. , Yasuoka, K. , Khalil, H. , Galal, A. , Ahmed, S. , Sweilam, N. and Moharram, H. (2011) Molecular dynamics simulation of the interaction of ethanol-water mixture with a Pt surface. Natural Science, 3, 1011-1021. doi: 10.4236/ns.2011.312126.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Carlos, A.C. and óscar, J.S. (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresource Technology, 98, 2415-2457. doi:10.1016/j.biortech.2007.01.002
[2] Carlos, A.C. and óscar, J.S. (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99, 5270-5295. doi:10.1016/j.biortech.2007.11.013
[3] Shen, S.Y., Zhao, T.S. and Xu, J.B. (2010) Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell. International Journal of Hydrogen Energy, 35, 12911-12917. doi:10.1016/j.ijhydene.2010.08.107
[4] Vasudevan, V.N. and Leland, M.V. (2007) High permeability membranes for the dehydration of low water content ethanol by pervaporation. Journal of Membrane Science, 306, 209-215. doi:10.1016/j.memsci.2007.08.050
[5] Song, S.Q. and Tsiakaras, P. (2006) Recent progress in direct ethanol proton exchange membrane fuel cells (DE- PEMFCs). Applied Catalysis B, 63, 187-193. doi:10.1016/j.apcatb.2005.09.018
[6] Song, S.Q., Zhou, W.J., Zhou, Z.H., Jiang, L.H., Sun, G.Q., Xin, Q., Leontidis, V., Kontou, S. and Tsiakaras, P. (2005) Direct ethanol PEM fuel cells: The case of platinum based anodes. International Journal of Hydrogen Energy, 30, 995-1001. doi:10.1016/j.ijhydene.2004.11.006
[7] Yao-Chun, W., Chaun, C. and Shin-Pon, J. (2008) Adsorption mechanism and dynamic behavior of water and ethanol molecules inside Au nanotubes, Chinese Journal of Catalysis, 29, 1099-1106. doi:10.1016/S1872-2067(09)60008-5
[8] Kousksou, T., Jamil, A., Zeraouli, Y. and Dumas, J.P. (2007) Equilibrium liquidus temperatures of binary mixtures from differential scanning calorimetry. Chemical Engineering Science, 62, 6516-6523. doi:10.1016/j.ces.2007.07.008
[9] Zhang, C., and Yang, X. (2005) Molecular dynamics simulation of ethanol/water mixtures for structure and diffusion properties. Fluid Phase Equilibria, 231, 1-10. doi:10.1016/j.fluid.2005.03.018
[10] Kusalik, P.G., Lyubarts, A.P., Bergman, D.L. and Laaksonen, A. (2000) Computer Simulation Study of Tert- butyl Alcohol. Structure in Aqueous Solution. Journal of Physical Chemistry B, 104, 9533-9539. doi:10.1021/jp001887o
[11] Soper, A.K. and Finney, J.L. (1993) Hydration of methanol in aqueous solution. Physical Review Letters, 71, 4346-4350. doi:10.1103/PhysRevLett.71.4346
[12] Sachtler, W.M.H. and Ichikawa, M. (1986) Catalytic site requirements for elementary steps in syngas conversion to oxygenates over promoted rhodium. Journal of Physicla Chemistry, 90, 4758-4764. doi:10.1021/j100411a009
[13] Ahmed, G., Atta, N.F., Darwesh, S.A. and Ali S.M. (2008) Electrodeposited metals at conducting polymer electrodes. II: Study of the oxidation of methanol at poly (3-methylthiophene) modified with Pt-Pd Co-catalyst. Topics in Catalysis, 47, 73-83.
[14] Kholmurodov, Kh., Puzynin, I., Smith, W., Yasuoka, K. and Ebisuzaki, T. (2001) MD simulation of cluster-sur- face impacts for metallic phases: soft landing, droplet spreading and implantation. Computer Physics Communications, 141, 1-16. doi:10.1016/S0010-4655(01)00292-2
[15] David, C.Y. (2001) Computational Chemistry: A practical guide for applying techniques to real-world problems. John Wiley & Sons, Inc., New York, Chapter 7.
[16] Cooke, D.J., Gray, R.J., Sand, K.K., Stipp, S.L.S. and Elliott, J.A. (2010) Interaction of ethanol and water with the {1014} surface of calcite. Langmuir, 26, 14520- 14529. doi:10.1021/la100670k
[17] Smith, W. and Forester, T.R. (1996) A general-purpose parallel molecular dynamics simulation package. Journal of Molecular Graphics, 14, 136-141. doi:10.1016/S0263-7855(96)00043-4
[18] Smith, W., Forester, T.R. and Todorov, I.T. (2008) The DL POLY 2 User Manual, Version 2.19. STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD Cheshire, UK.
[19] Sutton, A.P. and Chen, J. (1990) Long-range Finnis- Sinclair potential. Philosophical Magazine Letters, 61, 139-146. doi:10.1080/09500839008206493
[20] WWW-MINCRYST, Crystallographic and Crystallochemical Database for Minerals and their Structural Analogues.
[21] Price, W.S., Ide, W.S. and Arata, Y. (2003) Solution dynamics in aqueous monohydric alcohol systems. Journal of Physical Chemistry A, 107, 4784-4789. doi:10.1021/jp027257z
[22] Wensink, E.J.W., Hoffmann, A.C., van Maaren, P.J. and van der Spoel, D. (2003) Dynamic properties of water/alcohol mixtures studied by computer simulation. Journal of Chemical Physics, 119, 7308-7317. doi:10.1063/1.1607918
[23] Li, W., Chen, C. and Yang, J. (2008) Molecular dynamics simulation of self-diffusion coefficient and its relation with temperature using simple Lennard-Jones potential. Heat Transfer—Asian Research, 37, 86-93.
[24] Dixit, S., Crain, J., Poon, W.C.K., Finney, J.L. and Soper, A.K. (2002) Molecular segregation observed in a concentrated alcohol-water solution. Nature, 416, 829-832. doi:10.1038/416829a

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.