EEGcorco: a computer program to simultaneously calculate and statistically analyze EEG coherence and correlation


EEGcorco is a computer program designed to analyze the degree of synchronization between two electroencephalographic signals (EEG) by mean the analysis of correlation and coherence index. The correlation and coherence values permit the quantitative determination of the similarity among EEG signals from homologous areas of the cerebral hemispheres (interhemispheric), and among localized areas within one cerebral hemisphere (intrahemispheric). EEG coherence is a function of frequency; thus it is commonly presented in a spectral manner (coherence values in every frequency of the spectrum), in contrast, the correlation function has been employed mainly to search periodic components of bioelectrical signals, and normally appears as punctual values defined in time, hence it is not common calculate correlation spectra. EEGcorco offers an easy and novel way to calculate correlation spectra by mean the application of the Fast Fourier Transformation (FFT) to digitized EEG signals. Both, correlation and coherence spectra are obtained in both independent frequencies and frequencies grouped in wide bands. Moreover, the program applies parametric statistical analyses to those coherence and correlation spectra also, for each individual frequency and for the frequencies grouped in bands. The program functions on any PC-compatible computer equipped with a Pentium or superior processor and a minimum of 512 Mb of RAM memory (though the higher the capacity the better). The space required on the hard disk depends on the signals to be analyzed, as the output takes the form of files in text format that occupy very little space. The program has been elaborated completely in the Delphi environment for the Windows operating system. The efficacy and versatility of EEGcorco allow it to be easily adapted to different experimental and clinical needs.

Share and Cite:

Guevara, M. , Hernández-González, M. , Sanz-Martin, A. and Amezcua, C. (2011) EEGcorco: a computer program to simultaneously calculate and statistically analyze EEG coherence and correlation. Journal of Biomedical Science and Engineering, 4, 774-787. doi: 10.4236/jbise.2011.412096.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Lopes Da Silva, F.H. and Van Rotterdam, A. (1999) Biophysical aspects of EEG and Megnetoencephalogram generation. In: Niedermeyer, E. and Lopes Da Silva, F.H. Eds., Electroencephalography: Basic principles, clinical applications and related fields, Lippicott Williams & Wlikins, Baltimore, 93-109.
[2] Andreassi, J.L. (2000) Psychophysiology: Human behavior & physiological response. 4th Editon, Lawrence Erlbaum Associates Publishers, Mahwah.
[3] Fernández-Harmony, T. and González-Garrido, A. (2001) EEG y cognición. In: Alcaraz-Romero, V. M. and Gumá- Díaz, E. Eds., Texto de Neurociencias Cognitivas, Manual Moderno, Mexico City, 351-369.
[4] Guevara, M.A. and Corsi-Cabrera, M. (1996) EEG coherence or EEG correlation? International Journal of Psychophysiology, 23, 145-153. doi:10.1016/S0167-8760(96)00038-4
[5] Bendat, J.S. (1989) Engineering Applications of Correlation and Spectral Analysis. John Wiley & Sons, USA.
[6] Pearson, K. and Lee, A. (1903) On the laws of inheritance in man: I. Inheritance of physical characters. Biometrika, 2, 357-462.
[7] Cooley, J.W. and Tukey J. W. (1965) An algorithm for the machine calculation of complex fourier series. Mathematics of Computation, 19, 297-301. doi:10.1090/S0025-5718-1965-0178586-1
[8] Guilford, J.P. and Fruchter, B. (1984) Estadística aplicada a la Psicología y la educación. McGraw-Hill, Mexico City.
[9] Brazier, M.A. and Casby, J.U. (1952) Cross-correlation and autocorrelation studies of electroencephalographic potentials. Electroencephalography and Clinical Neurophysiology, 4, 201-211. doi:10.1016/0013-4694(52)90010-2
[10] French, C.C. and Beaumont, J.G. (1984) A critical review of EEG coherence studies of hemisphere function. International Journal of Psychophysiology, 1, 241-254. doi:10.1016/0167-8760(84)90044-8
[11] Grindel, O.M. (1965) The significance of correlation analysis for evaluation of the EEG in man Mathematical analysis of the electrical activity of the brain. Harvard University Press, Cambridge.
[12] Thatcher, R.W. and Walker, R.A. (1980) EEG coherence and intelligence in children. Electroencephalography & Clinical Neurophysiology, 49, S161.
[13] Shaw, J.C. (1981) An introduction to the coherence function and its use in EEG signal analysis. Journal of Medical Engineering & Technology, 6, 279-288. doi:10.3109/03091908109009362
[14] Corsi-Cabrera, M., Guevara, M.A., Arce, C. and Ramos, J. (1996) Inter and intrahemispheric EEG correlation as a function of sleep cycles. Progress in Neuropsychopharmacology and Biological Psychiatry, 20, 387-405. doi:10.1016/0278-5846(96)00004-8
[15] Corsi-Cabrera, M., Munoz-Torres, Z., del Rio-Portilla, Y. and Guevara, M.A. (2006) Power and coherent oscillations distinguish REM sleep, stage 1 and wakefulness. International Journal of Psychophysiology, 60, 59-66. doi:10.1016/j.ijpsycho.2005.05.004
[16] Kobayashi, T., Madokoro, S., Misaki, K., Murayama, J., Nakagawa, H. and Wada, Y. (2002) Interhemispheric differences of the correlation dimension in a human sleep electroencephalogram. Psychiatry and Clinical Neurosciences, 56, 265-266. doi:10.1046/j.1440-1819.2002.01020.x
[17] Perez-Garci, E., del-Rio-Portilla, Y., Guevara, M.A., Arce, C. and Corsi-Cabrera, M. (2001) Paradoxical sleep is characterized by uncoupled gamma activity between frontal and perceptual cortical regions. Sleep, 24, 118-126.
[18] Ramanand, P., Bruce, M.C. and Bruce, E.N. (2010) Mutual information analysis of EEG signals indicates age-related changes in cortical interdependence during sleep in middle-aged versus elderly women. Journal of Clinical Neurophysiology, 27, 274-284. doi:10.1097/WNP.0b013e3181eaa9f5
[19] Corsi-Cabrera, M., Arce, C., Ramos, J., and Guevara, M.A. (1997) Effect of spatial ability and sex on inter- and intrahemispheric correlation of EEG activity. Electroen- cephalography and Clinical Neurophysiology, 102, 5-11. doi:10.1016/S0013-4694(96)96091-5
[20] Corsi-Cabrera, M., Gutiérrez, S., Ramos, J. and Arce, C. (1988) Interhemispheric correlation of EEG activity during successful and unsuccessful cognitive performance. International Journal of Neuroscience, 39, 253-259. doi:10.3109/00207458808985712
[21] Portella, C.E., Silva, J.G., Machado, S., Velasques, B., Bastos, V.H., Ferreira-Vorkapic, C., Terra, P., Lopes, V., Cagy, M., Carvalho, E., Orsini, M., Basile, L., Piedade, R. and Ribeiro, P. (2007) EEG spectral coherence inter- and intrahemispheric during catching object fall task. Arquivos de Neuro-psiquiatria, 65, 63-67. doi:10.1590/S0004-282X2007000100014
[22] Ramos, J., Corsi-Cabrera, M., Guevara, M.A. and Arce, C. (1993) EEG activity during cognitive performance in women. International Journal of Neuroscience, 69, 185-195. doi:10.3109/00207459309003329
[23] Razumnikova, O.M. and Larina, E.N. (2005) Hemi- spheric interactions during a search of original verbal associations: EEG coherence in creative men and women. Zhurnal Vysshei Nervoi Deiatelnosti Imeni I P Pavlova, 55, 777-787.
[24] Serrien, D.J. (2008) Coordination constraints during bimanual versus unimanual performance conditions. Neuro-psychologia, 46, 419-425. doi:10.1016/j.neuropsychologia.2007.08.011
[25] Serrien, D.J. (2009) Verbal-manual interactions during dual task performance: An EEG study. Neuropsychologia, 47, 139-144. doi:10.1016/j.neuropsychologia.2008.08.004
[26] Grindel, O.M., Koptelov, M., Masherov, Iu, E. L. and Pronin, I.N. (1998) Foci of pathological activity in the human brain and their influence on the spatial-temporal relationships of the EEG. Zhurnal Vysshei Nervoi Deiatelnosti Imeni I P Pavlova, 48, 671-686.
[27] Cespedes-Garcia, Y., González-Hernández, J.A., García-Fidalgo, J., Begueria-Santos, R.A. and Figueredo-Rodríguez. P. (2003) Interictal EEG coherence in patients with partial temporal lobe epilepsy. Revista de Neurología, 37, 1107-1111.
[28] Cerdan, L.F., Guevara, M.A., Sanz, A., Amezcua, C. and Ramos-Loyo, J. (2005) Brain electrical activity changes in treatment refractory schizophrenics after olanzapine treatment. International Journal of Psychophysiology, 56, 237-247. doi:10.1016/j.ijpsycho.2004.12.008
[29] Higashima, M., Takeda, T., Kikuchi, M., Nagasawa, T. and Koshino, Y. (2006) Functional connectivity between hemispheres and schizophrenic symptoms: a longitudinal study of interhemispheric EEG coherence in patients with acute exacerbations of schizophrenia. Clinical EEG and Neurosciences, 37, 10-15.
[30] Wada, Y., Nanbu, Z., Jiang, Y., Koshino, Y. and Hashimoto, T. (1998) Interhemispheric EEG coherence in never-medicated patients with paranoid schizophrenia: Analysis at rest and during photic stimulation. Clinical EEG (Electroencephalography), 29, 170-176.
[31] Lazar, A. S., Lazar, Z. I., Biro, A., Gyori, M., Tarnok, Z., Prekop, C., Keszei, A, Stefanik, K., Gadoros, J., Halasz, P. and Bodizs, R. (2010) Reduced fronto-cortical brain connectivity during NREM sleep in Asperger syndrome: An EEG spectral and phase coherence study. Clinical Neurophysiology, 121, 1844-1854. doi:10.1016/j.clinph.2010.03.054
[32] Leveille, C., Barbeau, E.B., Bolduc, C., Limoges, E., Berthiaume, C., Chevrier, E., Mottron, L. and Godbout, R. (2010) Enhanced connectivity between visual cortex and other regions of the brain in autism: A REM sleep EEG coherence study. Autism Research, 3, 280-285. doi:10.1002/aur.155
[33] Adler, G., Brassen, S. and Jajcevic, A. (2003) EEG coherence in Alzheimer’s dementia. Journal of Neural Transmission, 110, 1051-1058. doi:10.1007/s00702-003-0024-8
[34] Pogarell, O., Teipel, S. J., Juckel, G., Gootjes, L., Moller, T., Burger, K., Leinsinger, G., Moller, H.J., Hegerl, U. and Hampel, H. (2005) EEG coherence reflects regional corpus callosum area in Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 76, 109-111. doi:10.1136/jnnp.2004.036566
[35] Abdullah, H., Maddage, N.C., Cosic, I. and Cvetkovic, D. (2010) Cross-correlation of EEG frequency bands and heart rate variability for sleep apnoea classification. Medical and Biological Engineering and Computing, 48, 1261-1269. doi:10.1007/s11517-010-0696-9
[36] Abeyratne, U.R., Swarnkar, V., Rathnayake, S.I. and Hukins, C. (2007) Sleep-stage and event dependency of brain asynchrony as manifested through surface EEG. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, 22-26 August 2007, 709-712.
[37] Aksahin, M., Aydin, S., Firat, H., and Erogul, O. (2010). Artificial apnea classification with quantitative sleep EEG synchronization. Journal of Medical Systems, 1-6.
[38] Bryzgalov, A.O. and Vol’f, N.V. (2006) Gender-related differences in EEG coherence in Stroop task. Zhurnal Vysshei Nervoi Deiatelnosti Imeni I P Pavlova, 56, 464-471.
[39] Corsi-Cabrera, M., Ramos, J., Guevara, M.A., Arce, C. and Gutierrez, S. (1993) Gender differences in the EEG during cognitive activity. International Journal of Neuroscience, 72, 257-264. doi:10.3109/00207459309024114
[40] Razumnikova, O.M. (2004) Gender differences in hemispheric organization during divergent thinking: an EEG investigation in human subjects. Neuroscience Letters, 362, 193-195. doi:10.1016/j.neulet.2004.02.066
[41] Vol’f, N.V., and Razumnikova, O.M. (2001) Dynamics of interhemispheric asymmetry during perception of verbal information in men and women: EEG analysis. Zhurnal Vysshei Nervoi Deiatelnosti Imeni I P Pavlova, 51, 310- 314.
[42] Grieve, P.G., Emerson, R.G., Fifer, W.P., Isler, J.R. and Stark, R.I. (2003) Spatial correlation of the infant and adult electroencephalogram. Clinical Neurophysiology, 114, 1594-1608. doi:10.1016/S1388-2457(03)00122-6
[43] Maurits, N.M., Scheeringa, R., van der Hoeven, J.H. and de Jong, R. (2006) EEG coherence obtained from an auditory oddball task increases with age. Journal of Clinical Neurophysiology, 23, 395-403. doi:10.1097/01.wnp.0000219410.97922.4e
[44] Tarokh, L., Carskadon, M.A. and Achermann, P. (2010) Developmental changes in brain connectivity assessed using the sleep EEG. Neuroscience, 171, 622-634. doi:10.1016/j.neuroscience.2010.08.071
[45] Sánchez-Bruno, A., Borges del Rosal, A. (2005) Transformación Z de Fisher para la determinación de intervalos de confianza del coeficiente de correlación de pearson. Psicothema, 17, 148-153.
[46] Guevara, M. A., Rizo-Martínez, L. E., Robles-Aguirre, F. A., Hernández-González, M. (in press) Prefrontal-parietal correlation during performance of the towers of Hanoi task in male children, adolescents and young adults. Developmental Cognitive Neuroscience.
[47] Sanz-Martin, A., Guevara, M. A., Amezcua, C., Santana, G. and Hernández-González, M. (2011) Effects of red wine on the electrical activity and functional coupling between the prefrontal-parietal cortices in young men. Appetite, 57, 84-93. doi:10.1016/j.appet.2011.04.004
[48] Hernández-González, M., Martínez-Pelayo, M., Arteaga-Silva, M., Bonilla-Jaime, H., Guevara, M. A. (2008) Ethanol changes the electroencephalographic correlation of the ventral tegmental area and nucleus accumbens, components of the mesoaccumbens system in rats. Pharmacology, Biochemistry and Behavior, 92, 124-130.
[49] Besthorn, C., Forstl, H., Geiger-Kabisch, C., Sattel, H., Gasser, T. and Schreiter-Gasser, U. (1994) EEG coherence in Alzheimer disease. Electroencephalography and Clinical Neurophysiology, 90, 242-245. doi:10.1016/0013-4694(94)90095-7
[50] Locatelli, T., Cursi, M., Liberati, D., Franceschi, M., Comi, G. (1998) EEG coherence in Alzheimer′s disease. Electroencephalography and Clinical Neurophysiology, 106, 229-237. doi:10.1016/S0013-4694(97)00129-6

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.