Drug Delivery: Plant Lectins as Bioadhesive Drug Delivery Systems

DOI: 10.4236/jbnb.2011.225073   PDF   HTML     5,383 Downloads   9,991 Views   Citations


Selective targeting of drugs to the proposed site of action provides therapeutic advantages such as reduced toxicity and smaller dose levels. Despite a huge progress made in drug design and delivery systems, many challenges still have to be solved. Small therapeutic drugs always have the potential to pass into the kidneys and be excreted from the body. The use of macromolecular constructs (carriers) that allow longer circulation times, contribute to improved chemical functionality and more precise drug delivery is an attractive alternative option. Bioadhesive systems which will utilize intense contact to increase the drug concentration gradient could be an attractive approach. Because of their specific carbohydrate-binding, lectins can interact with glycoconjugates present on the epithelial cells that line all of the organs exposed to the external environment. The unique carbohydrate specificities of plant lectins can facilitate mucoadhesion and cytoadhesion of drugs. As immunostimulatory molecules with an adjuvant effect plant lectins can also be employed in vaccine development.

Share and Cite:

Gavrovic-Jankulovic, M. and Prodanovic, R. (2011) Drug Delivery: Plant Lectins as Bioadhesive Drug Delivery Systems. Journal of Biomaterials and Nanobiotechnology, 2, 614-621. doi: 10.4236/jbnb.2011.225073.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. C. Goddard and D. M. Goddard, “Novel Drug Delivery Systems: Future Directions,” Journal of Neuroscience Nursing, Vol. 41, No. 2, 2009, pp. 115-120. doi:10.1097/JNN.0b013e318193458b
[2] A. S. Hoffman, B. D. Ratner, F. J. Schoen and J. E. Lemons, “Biomaterial Science: An Introduction to Materials in Medicine,” 2nd Edition, Elsevier Academic Press, 2004.
[3] T. Nagai and Y. Machida, “Mucosal Adhesive Dosage Forms,” Pharmaceutical International, Vol. 6, No. 5, 1985, pp. 196-200.
[4] K. R. Kamath and K. Park, “Mucosal Adhesive Preparations,” In: J. Swarbrick and J. C. Boylan, Eds., Encyclopedia of Pharmaceutical Technology, Vol. 10, Marcel Dekker, New York, 1994, pp. 133-163.
[5] S. Roy, K. Pal, A. Anis, K. Pramanik and B. Prabhakar, “Polymers in Mucoadhesive Drug Delivery System: A Brief Note,” Designed Monomers and Polymers, Vol. 12, No. 6, 2009, pp. 483-495. doi:10.1163/138577209X12478283327236
[6] G. P. Andrews, T. P. Laverty and D. S. Jones, “Muco-adhesive Polymeric Platforms for Controlled Drug Delivery,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 71, No. 3, 2009, pp. 505-518. doi:10.1016/j.ejpb.2008.09.028
[7] A. Shojaei and X. Li, “Mechanisms of Buccal Mucoadhesion of Novel Copolymers of Acrylic Acid and Polyethylene Glycol Monomethylether Monomethacrylate,” Journal of Controlled Release, Vol. 47, No. 2, 1997, pp. 151-161. doi:10.1016/S0168-3659(96)01626-4
[8] K. Park and J. R. Robinson, “Bioadhesive Polymers as Platforms for Oral-Controlled Drug Delivery: Method to Study Bioadhesion,” International Journal of Pharmacology, Vol. 19, 1984, pp. 107-127. doi:10.1016/0378-5173(84)90154-6
[9] A. Ludwig, “The Use of Mucoadhesive Polymers in Ocular Drug Delivery,” Advanced Drug Delivery Review, Vol. 57, No. 11, 2005, pp. 1595-1639. doi:10.1016/j.addr.2005.07.005
[10] N. Fefelova, Z. Nurkeeva, G. Mun and V. Khutoryanskiy, “Mucoadhesive Interactions of Amphiphilic Cationic Co-polymers Based on [2-(Methacryloyloxy)ethyl]trimethy-lammonium Chloride,” International Journal of Pharmacology, Vol. 339, 2007, pp. 25-32.
[11] A. Portero, D. Teijeiro-Osorio, M. Alonso and C. Remu-nan-López, “Development of Chitosan Sponges for Buccal Administration of Insulin,” Carbohydrate Polymers, Vol. 68, No. 4, 2007, pp. 617-625. doi:10.1016/j.carbpol.2006.07.028
[12] P. He, S. Davis and L. Illum, “In Vitro Evaluation of the Mucoadhesive Properties of Chitosan Microspheres,” International Journal of Pharmacology, Vol. 166, No. 1, 1998, pp. 75-88. doi:10.1016/S0378-5173(98)00027-1
[13] S. Rossi, F. Ferrari, M. Bonferoni and C. Caramella, “Characterization of Chitosan Hydrochloride-Mucin Interaction by Means of Viscosimetric and Turbidimetric Measurements,” European Journal of Pharmaceutical Science, Vol. 10, No. 4, 2000, pp. 251-257. doi:10.1016/S0928-0987(00)00065-8
[14] A. Bernkop-Schnürch, “Mucoadhesive Systems in Oral Drug Delivery,” Drug Discovery Today: Technology, Vol. 2, No. 1, 2005, pp. 83-87. doi:10.1016/j.ddtec.2005.05.001
[15] A. Bernkop-Schnurch, “Chitosan and Its Derivatives: Potential Excipients for Peroral Peptide Delivery Systems,” International Journal of Pharmaceutics, Vol. 194, No. 1, 2000, pp. 1-13. doi:10.1016/S0378-5173(99)00365-8
[16] R. Bansil and B. S. Bradley, “Mucin Structure, Aggregation, Physiological Functions and Biomedical Applications,” Current Opinion in Colloid & Interface Science, Vol. 11, No. 2-3, 2006, 164-170. doi:10.1016/j.cocis.2005.11.001
[17] A. Allen, “Structure and Function of Gastrointestinal Mucus,” In: L. Johnson, Ed., Physiology of the Gastroen- terology Tract, Raven Press, New York, 1981, pp. 617- 639.
[18] M. Neutra and J. Forstner, “Gastrointestinal Mucus: Synthesis, Secretion, and Function,” In: L. Johnson, Ed. Physiology of the Gastrointestinal Tract, Raven Press, New York, Chapter 34, 1987.
[19] J. Fontenot, N. Tjandra, D. Bu, C. Ho, R. Montelaro and O. Finn, “Biophysical Characterization of One-, Two-, and Three-Tandem Repeats of Human Mucin (Muc-1) Protein Core,” Cancer Research, Vol. 53, 1993, pp. 86- 94.
[20] L. Otvos and M. Cudic, “Conformation of Glycopeptides,” Mini Review in Medicinal Chemistry, Vol. 3, No. 7, 2003, pp. 703-711. doi:10.2174/1389557033487809
[21] J. Perez-Vilar and R. Hill, “The Structure and Assembly of Secreted Mucins,” Journal of Biological Chemistry, Vol. 274, No. 45, 1999, pp. 31751-31754. doi:10.1074/jbc.274.45.31751
[22] S. Harding, S. Davis, M. Deacon and I. Fiebrig, “Biopolymer Mucoadhesives,” Biopolymer mucoadhesives, Vol. 16, 1999, pp. 41-86.
[23] J. M. Gu, J. R. Robinson and S. H. Leung, “Binding of Acrylic Polymers to Mucin/Epithelial Surfaces: Structure-Property Relationships,” Critical Reviews in Thera- peutic Drug Carrier Systems, Vol. 5, No. 1, 1988, pp. 21- 67.
[24] H. Costantino, L. Illum, G. Brandt and P. S. Johnson, “Quay, Intranasal Delivery: Physicochemical and Thera- peutic Aspects,” International Journal of Pharmacology, Vol. 337, 2007, pp. 1-24. doi:10.1016/j.ijpharm.2007.03.025
[25] D. M. Suzuki, K. Alaqiakrishnan, K. H. Masaki, A. Okada and M. Carethers, “Patient Acceptance of Intranasal Cobalamin Gel for Vitamin B12 Replacement Therapy,” Hawaii Medical Journal, Vol. 65, No. 11, 2006, pp. 311-314.
[26] V. F. Patel, F. Liu and M. B. Brown, “Advances in Oral Transmucosal Drug Delivery,” Journal of Controlled Release, Vol. 153, No. 2, 2011, pp. 106-116. doi:10.1016/j.jconrel.2011.01.027
[27] J. D. Smart, “Lectin-Mediated Drug Delivery in the Oral Cavity,” Advanced Drug Delivery Reviews, Vol. 56, No. 4, 2004, pp. 481-489. doi:10.1016/j.addr.2003.10.016
[28] M. Chun, H. Sah and H. Choi, “Preparation of Mucoadhesive Microspheres Containing Antimicrobial Agents for Eradication of H. Pylori,” International Journal of Pharmacology, Vol. 297, No. 1-2, 2005, pp. 172-179.
[29] M. S?kkinen, J. Marvola, H. Kanerva, K. Lindevall, A. Ahonen and M. Marvola, “Are Chitosan Formulations Mucoadhesive in the Human Small Intestine? An Evaluation Based on Gamma Scintigraphy,” International Journal of Pharmacology, Vol. 307, No. 2, 2006, pp. 285-291.
[30] A. Krauland, D. Guggi and A. Bernkop-Schnürch, “Oral Insulin Delivery: The Potential of Thiolated Chitosan-Insulin Tablets on Non-Diabetic Rats,” Journal of Controlled Release, Vol. 95, No. 3, 2004, pp. 547-555. doi:10.1016/j.jconrel.2003.12.017
[31] D. L. Middleton, S. H. S. Leung and J. R. Robinson, “Ocular Bioadhesive Delivery Systems,” In: V. Lenaerts and R. Gurny, Eds., Bioadhesive Drug Delivery Systems, CRC Press, Florida, 1990, pp. 180-201.
[32] J. L. Greaves, “Ocular Drug Delivery,” In C.G. Wilson and N. Washington, Eds., Physiological Pharmaceuticals, Ellis Horwood, Chichester, 1989, pp. 121-138.
[33] in-Pharma Technologist.com, 10 January 2005, “Contact Lenses Deliver Drugs to Eye,” Retrieved on 30 May 2008. http://www.in-pharmatechnologist.com/news/ng.asp?id=57187-contact-lenses-deliver
[34] J. Sedlavek, “Possibilities of Application of Ophthalmic Drugs with the Aid of Gel Contact Lenses,” Cesk Oftalmology, Vol. 21, 1965, pp. 509-514.
[35] J. A. Legerton, “The future Is Now: Unveiling Smart Lenses,” http://www.reviewofcontactlenses.com/content/c/28320/
[36] J. B. Ciolino, T. R. Hoare, N. G. Iwata, I. Behlau, C. H. Dohlman, R. Langer and D. S. Kohane, “A Drug-Eluting Contact Lens,” Investigative Ophthlamology & Visual Science, Vol. 50, No. 7, 2009, pp.3346-52. doi:10.1167/iovs.08-2826
[37] D. Steinbers, M. Friedman, “Dental Drug-Delivery Devices: Local and Sustained-Release Applications,” Critical Review in Therapeutic Drug Carrier Systems, Vol. 16, 5, 1999, pp. 425-459.
[38] D. Harris and J. R. Robinson, “Drug Delivery via the Mucous Membranes of the Oral Cavity,” Journal of Pharmaceutical Sciences, Vol. 81, No. 8, 1992, pp. 1-10. doi:10.1002/jps.2600810102
[39] M. J. Rathbone and I. G. Drummond, “The Oral Cavity as a Site for Systemic Drug Delivery,” Advances Drug Delivery Review, Vol. 13, No. 1-2, 1994, pp. 1-22. doi:10.1016/0169-409X(94)90024-8
[40] J. D. Smart, “Drug Delivery Using Buccal Adhesive Systems,” Advances Drug Delivery Review, Vol. 11, No. 3, 1993, pp. 253-270. doi:10.1016/0169-409X(93)90012-S
[41] J. A. Wheatherell, C. Robinson and M. J. Rathbone, “Side Specific Differences in the Salivary Concentrations of Substances in the Oral Cavity—Implications for the Aetiology of Oral Disease and Local Drug Delivery,” Advances Drug Delivery Review, Vol. 13, No. 1-2, 1994, pp. 23-42. doi:10.1016/0169-409X(94)90025-6
[42] V. M. Patel, B. G. Prajapati and M. M. Patel, “Formulation, Evaluation, and Comparison of Bilayered and Multilayered Mucoadhesive Buccal Devices of Propranolol Hydrochloride,” AAPS Pharmscitech, Vol. 8, No. 1, 2007, pp. E147-E154. doi:10.1208/pt0801022
[43] V. F. Patel, F. Liu and M. C. Brown, “Advances in Oral Transmucosal Drug Delivery,” Journal of Controlled Release, Vol. 153, No. 2, 2011, pp. 106-116. doi:10.1016/j.jconrel.2011.01.027
[44] Y. Huang, W. Leobandung, A. Foss and N. A. Peppas, “Molecular Aspects of Muco-and Bioadhesion: Tethered Structures and Site-Specific Surfaces,” Journal of Con- trolled Release, Vol. 65, No. 1-2, 2000, pp. 63-71. doi:10.1016/S0168-3659(99)00233-3
[45] N. Fefelova, Z. Nurkeeva, G. Mun and V. Khutoryanski, “Mucoadhesive Interactions of Amphiphilic Cationic Co-polymers Based on [2-(Methacryloyloxy) ethyl trimethyl] Ammonium Chloride,” International Journal of Pharmaceutics, Vol. 339, No. 1-2, 2007, pp. 25-32. doi:10.1016/j.ijpharm.2007.02.019
[46] D. Jones, A. D. Woolfson, A. Brown, W. Coulter, C. McClelland and C. Irwin, “Design, Characterization and Preliminary Clinical Evaluation of a Novel Mucoadhesive Topical Formulation Containing Tetracycline for the Treatment of Periodontal Disease,” Journal of Controlled Release, Vol. 67, No. 2-3, 2000, pp. 357-368. doi:10.1016/S0168-3659(00)00231-5
[47] H. Junginger, J. Hoogstraate and J. C. Verhoef, “Recent Advances in Buccal Drug Delivery and Absorption—In Vitro and in Vivo Studies,” Journal of Controlled Release, Vol. 62, No. 1, 1999, pp. 149-159. doi:10.1016/S0168-3659(99)00032-2
[48] Z. Pavelic, N. Skalko-Basnet and R. Schubert, “Lipo- somal Gels for Vaginal Drug Delivery,” International Journal of Pharmacology, Vol. 219, No. 1-2, 2001, pp. 139-149. doi:10.1016/S0378-5173(01)00637-8
[49] A. Darwish, E. Hafez, I. El-Gebali and S. Hassan, “Evaluation of a Novel Vaginal Bromocriptine Mesylate Formulation: A Pilot Study,” Fertility and Sterility, Vol. 83, No. 4, 2005, pp. 1053-1055. doi:10.1016/j.fertnstert.2004.09.024
[50] F. Gabor, E. Bogner, A. Weissenboeck and M. Wirth, “The Lectin-Cell Interaction and Its Implications to Intestinal Lectin Mediated Drug Delivery,” Advanced Drug Delivery Reviews, Vol. 56, No. 4, 2004, pp. 459-480. doi:10.1016/j.addr.2003.10.015
[51] M. Gavrovic-Jankulovic and M. Groydanovic, “Application of Plant-Derived Food Lectins in Proteoglycomics and Immunomodulation,” In: S. Haugen and S. Meijer, Eds., Handbook of Nutritional Biochemistry: Genomics, Metabolomics, and Food Supply, Nova Science Publishers, Inc, New York, 2010, pp. 405-423.
[52] H. Lis, D. Belenky, A. Rabinkov and N. Sharon, “Purification of Lectins and Determination of Their Carbohydrate Specificity,” In: J. E. Celis, Ed., Cell Biology—A Laboratory Handbook, Academic Press, San Diego, 1994, pp. 332-338.
[53] C. Bies, C. M. Lehr and J. F. Woodley “Lectin-Mediated Drug Targeting: History and Applications,” Advanced Drug Delivery Reviews, Vol. 56, 2004, pp. 425-435. doi:10.1016/j.addr.2003.10.030
[54] G. J. Russel-Jones, H. Veitch and L. Arthur, “Lectin- Mediated Transport of Nanoparticles across Caco-2 and OK Cells,” International Journal of Pharmaceutics, Vol. 190, No. 2, 1999, pp. 165-174. doi:10.1016/S0378-5173(99)00254-9
[55] F. Roth-Walter, I. Sch?ll, E. Untersmayr, R. Fuchs, G. Boltz-Nitulescu, A. Weissenbock, O. Scheiner, F. Gabor and E. Jensen-Jarolim, “M Cell Targeting with Aleuria Aurantia Lectin as a Novel Approach for Oral Allergen Immunotherapy,” Journal of Allergy and Clinical Immunology, Vol. 114, No. 6, 2004, pp. 1362-1368. doi:10.1016/j.jaci.2004.08.010
[56] S. K. Jain and M. S. Jangdey, “Lectin Conjugated Gas- troretentive Multiparticulate Delivery System of Clarithromycin for the Effective Treatment of Helicobacter Pylori,” Molecular Pharmaceutics, Vol. 6, 2008, pp. 295-304. doi:10.1021/mp800193n
[57] E. C. Lavelle, “Targeted Delivery of Drugs to the Gastrointestinal Tract,” Critical Reviews in Therapeutic Drug Carrier Systems, Vol. 18, No. 4, 2001, pp. 341-386.
[58] R. Dimitrijevic, M. Jadranin, L. Burazer, S. Ostojic and M. Gavrovic-Jankulovic, “Evaluation of the Thermal Stability and Digestibility of Heterologously Produced Banana Lectin,” Food Chemistry, Vol. 120, 2010, pp. 1113- 1118. doi:10.1016/j.foodchem.2009.11.062
[59] M. Swanson, H. Winter, I. Goldstein and D. Markovitz, “A Lectin Isolated from Bananas Is a Potent Inhibitor of HIV Replication,” Journal of Biological Chemistry, Vol. 285, No. 12, 2010, pp. 8646-8655. doi:10.1074/jbc.M109.034926
[60] J. N. Tanya, K. L. Green, D. J. Rogers, J. D. Cook, S. Wolowacz and J. D. Smart, “Lectins in Ocular Drug Delivery: An Investigation of Lectin Binding Sites on the Corneal and Conjunctival Surfaces,” International Journal of Pharmaceutics, Vol. 138, No. 2, 1996, pp. 175-183. doi:10.1016/0378-5173(96)04540-1
[61] J. D. Smart, T. J. Nicholls, K. L. Green, D. J. Rogers and J. D. Cook, “Lectins in Drug Delivery: A Study of the Acute Local Irritancy of the Lectins from Solanum Tuberosum and Helix Pomatia,” European Journal of Pharmaceutical Sciences, Vol. 9, No. 1, 1999, pp. 93-98. doi:10.1016/S0928-0987(99)00050-0
[62] H. J. de Aizpurua and G. J. R. Jones, “Oral Vaccination: Identification of Classes of Proteins That Provoke an Immune Response upon Oral Feeding,” The Journal of Experimental Medicine, Vol. 167, 1988, pp. 440-451. doi:10.1084/jem.167.2.440
[63] M. D. Chapman, A. M Smith, L. D Vailes, L. K Arruda, V. Dhanaraj and A. Pomes, “Recombinant Allergens for Diagnosis and Therapy of Allergic Diseases,” Journal of Allergy and Clinical Immunology, Vol. 106, No. 3, 2000, pp. 409-418. doi:10.1067/mai.2000.109832
[64] W. J. Peumans, W. Zhang, A. Barre, C. H. Astoul, P. J. Balint-Kurti, P. Rovira, G. D. May, F. Van Leuven, P. Truffa-Bachi and E. J. Van Damme, “Fruit-Specific Lectins from Banana and Plantain,” Planta, Vol. 211, No. 4, 2000, pp. 546-554. doi:10.1007/s004250000307
[65] M. Yim, T. Ono and T. Irimura, “Mutated Plant Lectin Library Useful to Identify Different Cells,” Proceedings of National Academy of Sciences, Vol. 98, No. 5, 2001, pp. 2222-2225. doi:10.1073/pnas.041621998

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.