A Highly Efficient and Stable Visible-Light Plasmonic Photocatalyst Ag-AgCl/CeO2

DOI: 10.4236/wjnse.2011.14019   PDF   HTML     6,142 Downloads   12,771 Views   Citations


Noble metal Ag nanoparticles with unique surface plasmon resonance property have attracted much attention recently in the field of photocatalysis. Based on the advantages of Ag nanoparticles and semiconductor CeO2, a novel plasmonic photocatalyst Ag-AgCl/CeO2 was prepared with a facile route. The as-prepared samples were characterized using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffusion re?ection spectroscopy. This metal-semiconductor nanocomposite plasmonic photocatalyst exhibited a high visible-light photocatalytic activity and good stability for photocatalytic degradation of methyl orange in water. Ag-AgCl/CeO2 will be a potentially promising plasmonic photocatalysts for organic pollutant degradation and water purification.

Share and Cite:

H. Wang, L. Yang, H. Yu and F. Peng, "A Highly Efficient and Stable Visible-Light Plasmonic Photocatalyst Ag-AgCl/CeO2," World Journal of Nano Science and Engineering, Vol. 1 No. 4, 2011, pp. 129-136. doi: 10.4236/wjnse.2011.14019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Fujishima and K. Honda, “Electrochemical Photocatalysis of Water at a Semiconductor Electrode,” Nature, Vol. 238, No. 5358, 1972, pp. 37-38.
[2] B. Ohtani, R. M. Bowman, D. P. Colombo, H. Kominami, H. Noguchi and K. Uosaki, “Femtosecond Diffuse Reflectance Spectroscopy of Aqueous Titanium(IV) Oxide Suspension: Correlation of Electron-Hole Recombination Kinetics with Photocatalytic Activity,” Chemistry Letters, Vol. 27, No. 7, 1998, pp. 579-580. doi:10.1246/cl.1998.579
[3] S. Ikeda, N. Sugiyama, B. Pal, G. Marci, L. Palmisano, H. Noguchi, et al., “Photocatalytic Activity of Transition-Metal-Loaded Titanium(IV) Oxide Powders Suspended in Aqueous Solutions: Correlation with Electron-Hole Recombination Kinetics,” Physical Chemistry Chemistry Physics, Vol. 3, No. 2, 2001, pp. 267-273. doi:10.1039/b008028o
[4] A. Fujishima, X. T. Zhang and D. A. Tryk, “TiO2 Photocatalysis and Related Surface Phenomena,” Surface Science Reports, Vol. 63, No. 12, 2008, pp. 515-582. doi:10.1016/j.surfrep.2008.10.001
[5] T. W. Kim, S. J. Hwang, S. H. Jhung, J. S. Chang, H. Park, W. Choi, et al., “Bifunctional Heterogeneous Catalysts for Selective Epoxidation and Visible Light Driven Photolysis: Nickel Oxide-Containing Porous Nanocomposite,” Advanced Materials, Vol. 20, No. 3, 2008, pp. 539-542. doi:10.1002/adma.200701677
[6] J. Li, W. H. Ma, Y. P. Huang, X. Tao, J. C. Zhao and Y. M. Xu, “Oxidative Degradation of Organic Pollutants Utilizing Molecular Oxygen and Visible Light over a Supported Catalyst of Fe(bpy)2+3 in Water,” Applied Catalysis B: Environmental, Vol. 48, No. 1, 2004, pp. 17-24. doi:10.1016/j.apcatb.2003.09.003
[7] J. C. Zhao, C. C. Chen and W. H. Ma, “Photocatalytic Degradation of Organic Pollutants under Visible Light Irradiation,” Topics in Catalysis, Vol. 35, No. 3-4, 2005, pp. 269-278. doi:10.1007/s11244-005-3834-0
[8] M. D. Hernandez-Alonso, F. Fresno, S. Suarez and J. M. Coronado, “Development of Alternative Photocatalysts to TiO2: Challenges and Opportunities,” Energy & Environmental Science, Vol. 2, No. 12, 2009, pp. 1231-1257. doi:10.1039/b907933e
[9] P. F. Ji, J. L. Zhang, F. Chen and M. Anpo, “Study of Adsorption and Degradation of Acid Orange 7 on the Surface of CeO2 under Visible Light Irradiation,” Applied Catalysis B: Environmental, Vol. 85, No. 3-4, 2009, pp. 148- 154. doi:10.1016/j.apcatb.2008.07.004
[10] G. R. Bamwenda, K. Sayama and H. Arakawa, “The Photoproduction of O2 from a Suspension Containing CeO2 and Ce4+ Cations as an Electron Acceptor,” Chemistry Letters, Vol. 28, No. 10, 1999, pp. 1047-1048. doi:10.1246/cl.1999.1047
[11] Q. Fu, H. Saltsburg and M. Flytzani-Stephanopoulos, “Active Nonmetallic Au and Pt Species on Ceria Based Water Gas Shift Catalysts,” Science, Vol. 301, No. 5635, 2003, pp. 935-938. doi:10.1126/science.1085721
[12] E. Perry Murray, T. Tsai and S. A. Barnett, “A Direct-Methane Fuel Cell with Ceria-Based Anode,” Nature, Vol. 400, No. 6745, 1999, pp. 649-651. doi:10.1038/23220
[13] A. Corma, P. Atienzar, H. Garcia and J. Y. Chane-Ching, “Hierarchically Mesostructured Doped CeO2 with Potential for Solar-Cell Use,” Nature Materials, Vol. 3, No. 6, 2004, pp. 394-397. doi:10.1038/nmat1129
[14] V. Subramanian, E. Wolf and P. V. Kamat, “Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films,” Journal of Physical Chemistry B, Vol. 105, No. 46, 2001, pp. 11439-11446. doi:10.1021/jp011118k
[15] M. Miyauchi, A. Nakajima, T. Watanabe and K. Hashimoto, “Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films,” Chemistry of Materials, Vol. 14, No. 6, 2002, pp. 2812-2816. doi:10.1021/cm020076p
[16] L. B. Khalil, W. E. Mourad and M. W. Rophael, “Photocatalytic Reduction of Environmental Pollutant Cr(VI) over some Semiconductors under UV/Visible Light Illumination,” Applied Catalysis B: Environmental, Vol. 17, No. 3, 1998, pp. 267-273. doi:10.1016/S0926-3373(98)00020-4
[17] J. G. Yu, G. P. Dai and B. B. Huang, “Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 TiO2 Nanotube Arrays,” Journal of Physical Chemistry C, Vol. 113, No. 37, 2009, pp. 16394-16401. doi:10.1021/jp905247j
[18] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, et al., “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” Jouranl of the American Chemical Society, Vol. 130, No. 5, 2008, pp. 1676-1680. doi:10.1021/ja076503n
[19] X. Chen, H. Y. Zhu, J. C. Zhao, Z. T. Zheng and X. P. Gao, “Visible-Light-Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports,” Angewandte Chemie (International Edition), Vol. 47, No. 29, 2008, pp. 5353-5356. doi:10.1002/anie.200800602
[20] S. M. Sun, W. Z. Wang, L. Zhang, M. Shang and L. Wang, “Ag@C Core/Shell Nanocomposite as a Highly Efficient Plasmonic Photocatalyst,” Catalysis Communications, Vol. 11, No. 4, 2009, pp. 290-293. doi:10.1016/j.catcom.2009.09.026
[21] S. Rodrigues, S. Uma, I. N. Martyanov and K. J. Klabunde, “AgBr/Al-MCM-41 Visible-Light Photocatalyst for Gas-Phase Decomposition of CH3CHO,” Journal of Catalysis, Vol. 233, No.2, 2005, pp. 405-410. doi:10.1016/j.jcat.2005.05.011
[22] P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, J. Y. Wei, et al., “Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light,” Angewandte Chemie (International Edition), Vol. 47, No. 41, 2008, pp. 7931-7933. doi:10.1002/anie.200802483
[23] P. Wang, B. B. Huang, X. Y. Zhang, X. Y. Qin, H. Jin, Y. Dai, et al., “Highly Efficient Visible-Light Plasmonic Photocatalyst Ag@AgBr,” Chemistry—A European Journal, Vol. 15, No. 8, 2009, pp. 1821-1824. doi:10.1002/chem.200802327
[24] P. Wang, B. B. Huang, Q. Q. Zhang, X. Y. Zhang, X. Y. Qin, Y. Dai, et al, “Highly Efficient Visible Light Plasmonic Photocatalyst Ag@Ag(Br,I),” Chemistry—A European Journal, Vol. 16, No. 33, 2010, pp. 10042-10047. doi: 10.1002/chem.200903361
[25] P. Wang, B. B. Huang, Z. Z. Lou, X. Y. Zhang, X. Y. Qin, Y. Dai, et al, “Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalysts with Various Structures,” Chemistry—A European Journal, Vol. 16, No. 2, 2010, pp. 538-544. doi:10.1002/chem.200901954
[26] Y. Tian and T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles,” Jouranl of the American Chemical Society, Vol. 127, No. 20, 2005, pp. 7632- 7637. doi:10.1021/ja042192u
[27] X. F. Zhou, C. Hu, X. X. Hu, T. W. Peng and J. H. Qu, “Plasmon-Assisted Degradation of Toxic Pollutants with Ag-AgBr/Al2O3 under Visible-Light Irradiation,” Journal of Physical Chemistry C, Vol. 114, No. 6, 2010, pp. 2746-2750. doi:10.1021/jp909697k
[28] C. Hu, T. W. Peng, X. X. Hu, Y. L. Nie, X. F. Zhou, J. H. Qu, et al, “Plasmon-Induced Photodegradation of Toxic Pollutants with Ag-AgI/Al2O3 under Visible-Light Irradiation,” Jouranl of the American Chemical Society, Vol. 132, No. 2, 2010, pp. 857-862. doi:10.1021/ja907792d
[29] C. Hu, Y. Q. Lan, J. H. Qu, X. X. Hu and A. M. Wang, “Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria,” Journal of Physical Chemistry B, Vol. 110, No. 9, 2006, pp. 4066-4072. doi:10.1021/jp0564400
[30] C. Ping, L. Wei, T. L. Zhou, Y. P. Jin and M. Y. Gu, “Physical and Photocatalytic Properties of Zinc Ferrite Doped Titania under Visible Light Irradiation,” Journal of Photo-chemistry and Photobiology A: Chemistry, Vol. 168, No. 1-2, 2004, pp. 97-101. doi:10.1016/j.jphotochem.2004.05.018
[31] J. F. Hamilton, “Physical Properties of Silver Halide Microcrystals,” Photographic Science and Engineering, Vol. 18, No. 5, 1974, pp. 493-500.
[32] S. Glaus and G. Calzaferri, “The Band Structures of the Silver Halides AgF, AgCl, and AgBr: a Comparative Study,” Photochemical & Photobiological Sciences, Vol. 2, No. 4, 2003, pp. 398-401. doi:10.1039/b211678b
[33] F. B. Li, X. Z. Li, M. F. Hou, K. W. Cheah and W. C. H. Choy, “Enhanced Photocatalytic Activity of Ce3+-TiO2 for 2-Mercaptobenzothiazole Degradation in Aqueous Suspension for Odour Control,” Applied Catalysis A: General, Vol. 285, No. 1-2, 2005, pp. 181-189. doi:10.1016/j.apcata.2005.02.025

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.