Surfactant Enhanced Chemofiltration of Zinc Traces Previous to Their Determination by Solid Surphase Fluorescence

DOI: 10.4236/ajac.2011.28104   PDF   HTML     3,826 Downloads   6,158 Views   Citations


Surfactant enhanced chemofiltration on Nylon membranes pre-treated with hexadecyltrimethylammonium bromide (HTAB) and eosin dye (eo) is proposed for zinc traces quantification by solid surphase spectro- fluorimetry (SSF, λexc = 532 nm; λem = 548 nm). Operational variables which have influence on quantitative retention of metal complex have been studied and optimized. At optimal experimental conditions, quantita- tive recovery was reached with a detection limit of 0.662 pg?L–1 and quantification limit of 2.20 pg?L–1. The calibration sensitivity was of 1.22 L?pg–1 for the new methodology with a linear range of 2.20 pg?L–1 to 779 pg?L–1 Zn (II). The tolerance levels of potential interfering ions were studied with good results. Recuperation studies were carried out by standard addition method applied to natural water samples (San Juan, Argentine) without previous treatment. The reproducibility (between-days precision) was also evaluated over 3 days by performing five determinations each day. CV% was 0.37. The performing obtained in sensitivity and selec- tivity thanks to chemofiltration step, converts the proposed methodology in an adequate alternative to con- ventional techniques for Zn (II) traces determination.

Share and Cite:

M. Vega, M. Augusto, M. Talío and L. Fernández, "Surfactant Enhanced Chemofiltration of Zinc Traces Previous to Their Determination by Solid Surphase Fluorescence," American Journal of Analytical Chemistry, Vol. 2 No. 8, 2011, pp. 902-908. doi: 10.4236/ajac.2011.28104.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Mizuike, “Enrichment Techniques for Inorganic Trace Analysis,” Springer Verlag, Berlin, 1983.
[2] Y. A. Zolotov and N. M. Kuz’min, “Preconcentration of Trace Elements,” In: G. Svehla, Ed., Comprehensive Analytical Chemistry, Elsevier, Amsterdam, 1990.
[3] Z. B. Alfassi and C. M. Wai, “Preconcentration Tech- niques for Trace Elements,” CRC Press, Boca Ratón, 1992.
[4] L. R. Dutra, H. F. Maltez and E. Carasek, “Development of an on-Line Preconcentration System for Zinc Deter- mination in Biological Samples,” Talanta, Vol. 69, No. 2, 2006, pp. 488-493. doi:10.1016/j.talanta.2005.10.019
[5] M. Karbasia, B. Jahanparast, M. Shamsipur and J. Hassan, “Simultaneous Trace Multielement Determination by ICP-OES after Solid Phase Extraction with Modified Octadecyl Silica Gel,” Journal of Hazardous Materials, Vol. 170, No. 1, 2009, pp. 151-155. doi:10.1016/j.jhazmat.2009.04.119
[6] J. Suleiman, B. Hu, C. Huang and N. Zhang, “Determination of Cd, Co, Ni and Pb in Biological Samples by Microcolumn Packed with Black Stone (Pierre Noire) Online Coupled with ICP-OES,” Journal of Hazardous Materials, Vol. 157, No. 2-3, 2008, pp. 410-417. doi:10.1016/j.jhazmat.2008.01.014
[7] R. A. Correa and G. M. Escandar, “A New Analytical Application of Nylon-Induced Room-Temperature Phosphorescence: Determination of Thiabendazole in Water Samples,” Analytica Chimica Acta, Vol. 571, No. 1, 2006, pp. 8-65.doi:10.1016/j.aca.2006.04.052
[8] G. M. Escandar, D. González Gómez, A. Espinosa Man- silla, A. Mu?oz de la Pe?a and H. C. Goicoechea, “Determination of Carbamazepine in Serum and Pharmaceutical Preparations Using Immobilization on a Nylon Support and Fluorescence Detection,” Analytica Chimica Acta, Vol. 506, No. 2, 2004, pp. 161-170. doi:10.1016/j.aca.2003.11.014
[9] C. Peralta, L. Fernández and A. Masi, “A Novel Application of Immobilization on Membranes for the Separation and Spectrofluorimetric Quantification of Amiloride and Furosemide in Pharmaceutical Samples,” Analytica Chimica Acta, Vol. 661, No. 1, 2010, pp. 85-90. doi:10.1016/j.aca.2009.12.015
[10] W. Kaim and B. Schwederski, “Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life,” Wiley, New York, 1994.
[11] L. R. Goldfrank, “Goldfrank’s Toxicologic Emergen- cies,” 8th Edition, McGraw Hill, New York, 2006.
[12] I. Gaubeur, L. H. S. Avila-Terra, J. C. Masini and M. E. V. Suárez-Iha, “Analytical Sciences,” The International Journal of the Japan Society for Analytical Chemistry, Vol. 23, 2007, pp. 227-1231.
[13] C. Terrés-Martos, M. Navarro-Alarcón, F. Martin-Lagos, R. Giménez-Martínez, H. López-García De La Serrana and M. C. López-Martínez, Water Research, Vol. 36, No. 7, 2002, pp. 1912-1916. doi:10.1016/S0043-1354(01)00373-6
[14] O. I. Yurchenko, I. P. Kharenko and N. P. Titova, “Increasing the Sensitivity and Accuracy of Zinc Determination in Atomic Absorption Spectrometry,” Journal of Applied Spectroscopy, Vol. 75, No. 2, 2008, pp. 283-287. doi:10.1007/s10812-008-9041-6
[15] M. Soylak and N. D. Erdogan, “Copper (II)-Rubeanic Acid Coprecipitation System for Separation-Preconcen- tration of Trace Metal Ions in Environmental Samples for Their Flame Atomic Absorption Spectrometric Determinations,” Journal of Hazardous Materials, Vol. B137, No. 2, 2006, pp. 1035-1041. doi:10.1016/j.jhazmat.2006.03.031
[16] B. S. Shanbhag and Z. R. Turel, “Destructive and NondeStructive Analysis of Some Elements in Tissue and Environ-Mental Samples by Thermal Neutron Activation Analysis Technique,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 197, No. 2, 1995, pp. 417-425. doi:10.1007/BF02036015
[17] A. Montaser and W. Golightly, “Inductively Coupled Plasmas in Analytical Atomic Spectrometry,” Wiley, New York, 1999.
[18] J. Wang, E. H. Hansen and B. Gammelgaard, “Flow Injection Online Dilution for Multi-Element Determination in Human Urine with Detection by Inductively Coupled Plasma Mass Spectrometry,” Talanta, Vol. 55, No. 1, 2001, pp. 117-126. doi:10.1016/S0039-9140(01)00397-6
[19] A. Montaser and W. Golightly, “Inductively Coupled Plasmas Mass Spectrometry,” Wiley, New York, 1998.
[20] B. M. Wah Fong, T. S. Siu, J. S. Kit Lee and S. Tam, “Multi-Elements (Aluminium, Copper, Magnesium, Manganese, Selenium and Zinc) Determination in Serum by Dynamic Reaction Cell-Inductively Coupled Plasma- Mass Spectrometry,” Clinical Chemistry and Laboratory Medicine, Vol. 47, 2009, pp. 75-78. doi:10.1515/CCLM.2009.006
[21] M. Luconi, R. Olsina, L. Fernández and M. Silva, “Determination of Lead in Human Saliva by Combined Cloud Point Extraction-Capillary Zone Electrophoresis with Indirect uv Detection,” Journal of Hazardous Materials, Vol. 128, No. 2-3, 2005, pp. 240-246. doi:10.1016/j.jhazmat.2005.08.007
[22] C. Wang, M. Luconi, A. Masi and L. Fernández, “Determination of Terazosin by Cloud Point Extraction- Fluorimetric Combined Methodology,” Talanta, Vol. 72, No. 5, 2007, pp. 1779-1785. doi:10.1016/j.talanta.2007.02.010
[23] C. Wang, A. Masi and L. Fernández, “On-Line Micellar Enhanced Spectrofluorimetric Determination of Rhodamine Dye in Cosmetics,” Talanta, Vol. 75, 2008, pp. 135- 140.
[24] R. Silva, C. Wang, L. Fernández and A. Masi, “Flow injection Spectrofluorimetric Determination of Carvedilol Mediated by Micelles,” Talanta, Vol. 76, No. 1, 2008, pp. 166-171. doi:10.1016/j.talanta.2008.02.029
[25] M. C. Talio, M. O. Luconi, A. N. Masi and L. P. Fernández, “Determination of Cadmium at Ultra-Trace Levels by CPE-Molecular Fluorescence Combined Methodology,” Journal of Hazardous Materials, Vol. 170, No. 1, 2009, pp. 272-277. doi:10.1016/j.jhazmat.2009.04.101
[26] L. Gzara and M. Dhahbi, “Removal of Chromate Anions by Micellar Enhanced Ultrafiltration Using Cationic Surfacetants,” Desalination, Vol. 137, No. 1-3, 2001, pp. 13-19. doi:10.1016/S0011-9164(01)00225-9
[27] J. Huanga, G. Zenga, C. Zhoua, X. Li, L. Shia and S. He, “Adsorption of Surfactant Micelles and Cd2+/Zn2+ in Micellar-Enhanced Ultrafiltration,” Journal of Hazardous Materials, Vol. 183, No. 1-3, 2010, pp. 287-293. doi:10.1016/j.jhazmat.2010.07.022
[28] J. Wan, Z. Li, Xi. Lu and S. Yuan, “Remediation of a Hexachlorobenzene-Contaminated Soil by Surfactant-En- hanced Electrokinetics Coupled with Microscale Pd/Fe PRB,” Journal of Hazardous Materials, Vol. 184, No. 1-3, 2010, pp. 184-190. doi:10.1016/j.jhazmat.2010.08.022
[29] M. C. Talio, M. O. Luconi, A. N. Masi and L. P. Fernández, “Solid Surface Spectroscopic Methodology for Ultra-Trace Urinary Nickel Monitoring in Smokers and Non-Smokers’ Subjects,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 52, No. 5, 2010, pp. 694- 700. doi:10.1016/j.jpba.2010.02.013
[30] M. C. Talio, M. O. Luconi, A. N. Masi and L. P. Fernández, “Cadmium Monitoring in Saliva and Urine as Indicator of Smoking Addiction,” Science of The Total Environment, Vol. 408, No. 16, 2010, pp. 3125-3132. doi:10.1016/j.scitotenv.2010.03.052

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.