Transmission Characteristics of Tuneable Optical Filters Using Optical Ring Resonator with PCF Resonance Loop
Kazhal Shalmashi, Faramarz E. Seraji, Mansur Rezaei Mersagh
.
DOI: 10.4236/opj.2011.14028   PDF    HTML     5,134 Downloads   10,459 Views   Citations

Abstract

A theoretical analysis of a tuneable optical filter is presented by proposing an optical ring resonator (ORR) using photonic crystal fiber (PCF) as the resonance loop. The influences of the characteristic parameters of the PCF on the filter response have been analyzed under steady-state condition of the ORR. It is shown that the tuneability of the filter is mainly achieved by changing the modulation frequency of the light signal applied to the resonator. The analyses have shown that the sharpness and the depth of the filter response are controlled by parameters such as amplitude modulation index of applied field, the coupling coefficient of the ORR, and hole-spacing and air-filling ratio of the PCF, respectively. When transmission coefficient of the loop approaches the coupling coefficient, the filter response enhances sharply with PCF parameters. The depth and the full-width half-maximum (FWHM) of the response strongly depends on the number of field circulations in the resonator loop. With the proposed tuneability scheme for optical filter, we achieved an FWHM of ~1.55 nm. The obtained results may be utilized in designing optical add/drop filters used in WDM communication systems.

Share and Cite:

K. Shalmashi, F. Seraji and M. Mersagh, "Transmission Characteristics of Tuneable Optical Filters Using Optical Ring Resonator with PCF Resonance Loop," Optics and Photonics Journal, Vol. 1 No. 4, 2011, pp. 172-178. doi: 10.4236/opj.2011.14028.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. F. Stokes, M. Chodorow and H. J. Shaw, “All-Single- Mode Fiber Resonator,” Optics Letters, Vol. 7, No. 6, 1982, pp. 288-290. doi:10.1364/OL.7.000288
[2] G. S. Pandian and F. E. Seraji, “Optical Pulse Response of a Fiber Ring Resonator,” IEE Proceedings Journal, Vol. 138, No. 3, 1991, pp. 235-239.
[3] M. Sumetsky, “Optical Fiber Microcoil Resonator,” Op- tics Express, Vol. 12, No. 10, 2004, pp. 2303-2316. doi:10.1364/OPEX.12.002303
[4] H. L. Ma, S. J. Wang, and Z. H. Jin, “Silica WaveGuide ring Resonators with Multi-Turn Structure,” Optics Com- munications, Vol. 281, No. 9, 2008, pp. 2509-2512.
[5] G. S. Pandian and F. E. Seraji; “Analysis of a Fibre-Optic Ring Resonator with Polarization Effects: Application to Polarization Sensing with Improved Sensitivity,” Journal of Modern Optics, Vol. 39, No. 5, 1992, pp. 991-1001. doi:10.1080/09500349214551021
[6] R. W. Boyd and J. H. Heebner, “Sensitive Disk Resonator Photonic Biosensor,” Applied Optics, Vol. 40, No. 31, 2001, pp. 5742-5747. doi:10.1364/AO.40.005742
[7] Sai T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato and Yasuo Kokubun, “An Eight-Channel Add/Drop Filter Using Vertically Coupled Microring Resonator over a Cross Grid,” IEEE Photoics Technology Letters, Vol. 11, Issue 6, 1999, pp. 691-693.
[8] S. Mandal, K. Dasgupta, T. K. Basak and S. K. Ghosh, “A Generalized Approach for Modeling and Analysis of Ring-Resonator Performance as Optical Filter,” Optics Communications, Vol. 264, No. 1, 2006, pp. 97-104. doi:10.1016/j.optcom.2006.02.028
[9] P. Saeung and P. P. Yupapin, “Generalized Analysis of Multiple Ring Resonator Filters: Modeling by Using Graphical Approach,” Optik, Vol. 119, No. 10, 2008, pp. 465-472. doi:10.1016/j.ijleo.2006.12.017
[10] S. Dilwali and G. S. Pandian, “Pulse Response of a Fiber Dispersion Equalizing Scheme Based on an Optical Resonator”, IEEE Photonics Technology Letters, Vol. 4, No. 8, 1992, pp. 942-944. doi:10.1109/68.149917
[11] H. Shen, J.-P. Chen, X.-W. Li and Y.-P. Wang, “Group Delay and Dispersion Analysis of Compound High Order Microring Resonator All-Pass Filter,” Optics Communi- cations, Vol. 262, No. 2, 2006, pp. 200-205. doi:10.1016/j.optcom.2005.12.060
[12] Y. Dumeige, C. Arnaud and P. Féron, “Combining FDTD with Coupled Mode Theories for Bistability in Micro-Ring Resonators,” Optics Communications, Vol. 250, No. 4-6, 2005, pp. 376-383. doi:10.1016/j.optcom.2006.11.065
[13] P. P. Yupapin, “Coupler-Loss and Coupling-Coeffi-Cient- Dependent Bistability and Instability in a Ring Resona- tor,” Optik, Vol. 119, No. 10, 2008, pp. 492-494. doi:10.1016/j.ijleo.2007.01.006
[14] O. Schwelb, “Crosstalk and Bandwidth of Lossy Micro- ring Add/Drop Multiplexers,” Optics Communications, Vol. 265, No. 1, 2006, pp. 175-179. doi:10.1016/j.optcom.2006.02.055
[15] J. Q. Li, L. Li, J. Q. Zhao and C. F. Li, “Ultrafast, Low Power, and Highly Stable All-Optical Switch in MZI with Two-Arm-Sharing Nonlinear Ring Resonator,” Optics Communications, Vol. 256, No. 4-6, 2005, pp. 319-325. doi:10.1016/j.optcom.2005.06.087
[16] A. Rostami, “Low Threshold and Tuneable All-Optical Switch Using Two-Photon Absorption in Array of Non- linear Ring Resonators Coupled to MZI,” Microelectro- nics Journal, Vol. 37, No. 9, 2006, pp. 976-981. doi:10.1016/j.mejo.2006.01.021
[17] P. P. Yupapin, P. Chunpang, “An Experimental Investiga- tion of the Optical Switching Characteristics Using Optical Sagnac Interferometer Incorporating One and Two Resonators,” Optics & Laser Technology, Vol. 40, No. 2, 2008, pp. 273-277. doi:10.1016/j.optlastec.2007.04.012
[18] J. L. S. Lima, K. D. A. Sabóia, J.C. Sales, J. W. M. Me- nezes, W. B. de Fraga, G. F. Guimar?es and A. S. B. Som- bra, “Optical Short Pulse Switching Characteristics of Ring Resonators,” Optical Fiber Technology, Vol. 14, No. 1, 2008, pp. 79-83. doi:10.1016/j.yofte.2007.07.004
[19] V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Gro- ver and P. T. Ho, “Optical Signal Processing Using Non- linear Semiconductor Microring Resonators,” IEEE Jour- nal of Selected Topics in Quantum Electronics, Vol. 8, No. 3, 2002, pp. 705-713. doi:10.1109/JSTQE.2002.1016376
[20] H. Tazawa and W. H. Steier, “Analysis of Ring Resonator- Based Traveling-Wave Modulators,” IEEE Photonics Te- chnology Letters, Vol. 18, No., 2006, pp. 211-213.
[21] B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Micro- ring Resonator Arrays for VLSI Photonics,” IEEE Photo- nics Technology Letters, Vol. 12, No. 3, 2000, pp. 320- 325. doi:10.1109/68.826928
[22] F. E. Seraji, “New Methods for Rotation Sensing by Using a Two-Coupler Fiber-Optic Ring Resonator,” Japanese Journal of Applied Physics, Vol. 32, No. 4, 1993, pp. 1661-1667. doi:10.1143/JJAP.32.1661
[23] F. E. Seraji and G. S. Pandian, “Dynamic Response of a Fiber Optic Ring Resonator with Sinusoidal Phase Modu- lation of the Loop,” Journal of Modern Optics, Vol. 38, No. 4, 1991, pp. 671-676. doi:10.1080/09500349114550671
[24] G. S. Pandian and F. E. Seraji, “Dynamic Analysis of a Fiber-Optic Ring Resonator Excited by a Sinewave-Mo- dulated Laser Diode,” Japanese. Journal of Applied Phy- sics, Vol. 29, No. 10, 1990, 1967-1973. doi:10.1143/JJAP.29.1967
[25] D. Q. Ying, H. L. Ma and Z. H. Jin, “Dynamic Resonance Characteristic Analysis of Fiber Ring Resonator,” Optical Fiber Technology, Vol. 15, No. 1, 2009, pp. 15-20. doi:10.1016/j.yofte.2008.03.005
[26] D. G. Rabus, M. Hamacher and H. Heidrich, “Resonance Frequency Tuning of a Double Ring Resonator in GaIn- AsP/InP: Experiment and Simulation,” Japanese Journal of Applied Physics, Vol. 41, No. 1, 2002, pp. 1186-1189. doi:10.1143/JJAP.41.1186
[27] J. Heebner, R. Grover and T. Ibrahim, “Optical Microre- sonators: Theory, Fabrication, and Applications,” Sprin- ger, Heidelberg, 2007.
[28] H. S. Jang, K. N. Park and K. S. Lee, “Characterization of Tunable Photonic Crystal Fiber Directional Couplers,” Applied Optics, Vol. 46, No. 18, 2007, pp. 3688-3693. doi:10.1364/AO.46.003688
[29] H. Kim, . Kim, U.-C. Paek, B. H. Lee and K. T. Kim, “Tunable Photonic Crystal Fiber Coupler Based on a Side-Polishing Technique,” Optics Letters, Vol. 29, No. 11, 2004, pp. 1194-1196. doi:10.1364/OL.29.001194
[30] F. E. Seraji, M. Rashidi and V. Khasheie, “Parameter Analysis of a Photonic Crystal Fiber with Raised-Core Index Profile Based on Effective Index Method,” Chinese Optics Letters, Vol. 4, No. 8, 2006, pp. 442-445.
[31] M. Koshiba and K. Saitoh, “Structural Dependence of Effective Area and Mode Field Diameter for Holey Fibers,” Optics Express, Vol. 11, No. 15, 2003, pp. 1746- 1756. doi:10.1364/OE.11.001746
[32] T. A. Birks, J. C. Knight and P. S. J. Russell, “Endlessly Single Mode Photonic Crystal Fibre,” Optics Letters, Vol. 22, No. 13, 1997, pp. 961-963. doi:10.1364/OL.22.000961
[33] M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev and D. Bonacinni, “Predicting Macrobending Loss for Large-Mode Area Photonic Crystal Fibers,” Optics Experss, Vol. 12, No. 8, 2004, pp. 1775-1779. doi:10.1364/OPEX.12.001775
[34] Y. F. Li, Y. H. Yao, M. L. Hu, L. Chai and C. Y. Wang, “Improved Fully Vectorial Effective Index Method for Photonic Crystal Fibers: Evaluation and Enhancement,” Applied Optics, Vol. 47, No. 3, 2008, pp. 399-406. doi:10.1364/AO.47.000399
[35] F. E. Seraji, “Steady-State Performance Analysis of Fiber- Optic Ring Resonator,” Progress in Quantum Electronics, Vol. 33, No. 1, 2009, pp. 1-16. doi:10.1016/j.pquantelec.2008.10.001

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.