Radiative Recombination Mechanisms of Large InAs/GaAs Quantum Dots


The optical properties of large InAs/GaAs quantum dots were investigated by low-temperature photoluminescence as a function of the excitation-power density. The presence of excited states was clearly detected below the saturation regime of the ground state. We analyzed the dependence of the integrated-photoluminescence intensity on the excitation-power density and the type of radiative recombination involving the electronic ground state and the excited states inside the quantum dots. We concluded that the probability to have more than one exciton by dots must be considered, and the usual equation , must be revised to correctly describe the origin of the recombination and must include other factors as scattering, relaxation time, radiative recombination rate, and others.

Share and Cite:

S. Martini, A. Marques, M. Marques, A. Quivy and L. Teles, "Radiative Recombination Mechanisms of Large InAs/GaAs Quantum Dots," World Journal of Condensed Matter Physics, Vol. 1 No. 4, 2011, pp. 161-166. doi: 10.4236/wjcmp.2011.14024.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. Yasuoka, K. Kawaguchi, H. Ebe and T. Akiyama, M. Ekawa, S. Tanaka, K. Morito, A. Uetake, M. Sugawara and Y. Arakawa, “Demonstration of Transverse-Magnetic Dominant Gain in Quantum Dot Semiconductor Optical Amplifiers,” Applied Physics Letters, Vol. 92, No. 10, 2001, pp. 101108-101110. doi:10.1063/1.2883978
[2] I. L. Krestnikov, N. A. Maleev, A. V. Sakharov, A. R. Kovsh, A. E. Zhukov, A. F. Tsatsulnikov, V. M. Ustinov, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg and J. A. Lott, “1.3 μm Resonant-Cavity InGaAs/GaAs Quantum Dot Light-Emitting Devices,” Semiconductor Science Te- chnolology, Vol. 16, No. 10, 2001, p. 844 doi:10.1088/0268-1242/16/10/306
[3] Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang and Y. Li, “Bright, Multicoloured Light-Emitting Diodes Based on Quantum Dots,” Nature Photonics, Vol. 1, No. 12, 2007, pp. 717-722. doi:10.1038/nphoton.2007.226
[4] C. Y. Liu, S. F. Yoon, Q. Cao, C. Z. Tong and H. F. Li, “Low Transparency Current Density and High Tempera- ture Operation from Ten-Layer P-Doped 1.3?μm InAs/InGaAs/ GaAs Quantum Dot Lasers,” Applied Physics Letters, Vol. 90, No. 4, 2007, pp. 041103-041105. doi:10.1063/1.2434156
[5] C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki and T.-H. Wang, “Single-Quantum-Dot-Based DNA Nanosensor,” Nature Materials, Vol. 4, No. 11, 2005, pp. 826-831. doi:10.1038/nmat1508
[6] B. Dubertret, “Quantum Dots: DNA Detectives,” Nature Materials, Vol. 4, No. 11, 2005, pp. 797-798. doi:10.1038/nmat1520
[7] D. Loss and D. P. DiVincenzo, “Quantum Computation with Quantum Dots,” Physical Review A, Vol. 57, No. 1, 1998, pp. 120-126. doi:10.1103/PhysRevA.57.120
[8] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi and H. J. Kimble, “Measurement of Conditional Phase Shifts for Quantum Logic,” Physical Review Letters, Vol. 75, No. 25, 1995, pp. 4710-4713. doi:10.1103/PhysRevLett.75.4710
[9] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano and D. J. Wineland, “Demonstration of a Fundamental Quantum Logic Gate,” Physical Review Letters, Vol. 75, No. 25, 1995, pp. 4714-4717. doi: 10.1103/PhysRevLett.75.4714
[10] M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip and I. Abram, “Single Photon E- mission from Site-Controlled Pyramidal Quantum Dots,” Applied Physics Letters, Vol. 84, No. 5, 2001, pp. 1643533- 1643535. doi:10.1063/1.1643533
[11] M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva,and J. R. Leite, “InAs/GaAs Quantum Dots Op- tically Active at 1.5 μm,” Applied Physics Letters, Vol. 82, No. 16, 2003, pp. 2646-2648. doi:10.1063/1.1569053
[12] M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva and J. R. Leite, “Optical Response at 1.3 μm and 1.5 μm with InAs Quantum Dots Embedded in a Pure GaAs Matrix, ” Journal of Crystal Growth, Vol. 251, No. 1-4, pp. 181-185. doi:10.1016/S0022-0248(02)02405-3
[13] W. Rudno-Rudziński, G. S?k, J. Misiewicz, T. E. Lamas, and A. A. Quivy, “The Formation of Self-Assembled InAs/ GaAs Quantum Dots Emitting at 1.3?μm Followed by Photo- reflectance Spectroscopy,” Journal of Applied Physics, Vol. 101, No. 7. 2007, pp. 073518-073521. doi:10.1063/1.2714686
[14] E. C. Le Ru, J. Fack and R. Murray, “Temperature and Excitation Density Dependence of the Photoluminescence from Annealed InAs/GaAs Quantum Dots,” Physical Re- view B, Vol. 67, No. 24, 2003, pp. 245318-245329. doi:10.1103/PhysRevB.67.245318
[15] S. Sanguinetti, D. Colombo, M. Guzzi, E. Grilli, M. Gu- rioli, L. Seravalli, P. Frigeri, and S. Franchi, “Carrier Ther- modynamics in InAs/InxGa1?xAs Quantum Dots,” Physi- cal Review B, Vol. 74, No. 20, 2006, pp. 205302-205307. doi: 10.1103/PhysRevB.74.205302
[16] K. Mukai, N. Ohtsuka, H. Shoji and M. Sugawara, “Emi- ssion from Discrete Levels in Self-Formed InGaAs/GaAs Quantum Dots by Electric Carrier Injection: Influence of Phonon Bottleneck,” Applied Physics Letters, Vol. 68, No. 21, 1996, pp. 3013-3015. doi:10.1063/1.116681
[17] R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bim- berg, V. M. Ustinov, P. S. Kop’ev and Zh. I. Alferov, “E- nergy Relaxation by Multiphonon Processes in InAs/ GaAs Quantum Dots” Physical Review B, Vol. 56, No. 16, 1997, pp. 10435-10445. doi:10.1103/PhysRevB.56.10435
[18] R. Heitz, F. Guffarth, I. Mukhametzhanov, M. Grundmann, A. Madhukar, and D. Bimberg, “Many-Body Effects on the Optical Spectra of InAs/GaAs Quantum Dots” Physi- cal Review B, Vol. 62, No. 24, 2000, pp. 16881-16885. doi: 10.1103/PhysRevB.62.16881
[19] M. Grundmann, N. N. Ledentsov, O. Stier, J. B?hrer, D. Bim- berg, V. M. Ustinov, P. S. Kop’ev and Zh. I. Alferov, “Na- ture of Optical Transitions in Self-Prganized InAs/GaAs Quantum Dots,” Physical Review B, Vol. 53, No. 16, 1996, pp. R10509-R10511. doi: 10.1103/PhysRevB.53.R10509
[20] D. Morris, N. Perret and S. Fafard, “Carrier Energy Re- laxation by Means of Auger Processes in InAs/GaAs Self- Assembled Quantum Dots” Applied Physics Letters, Vol. 75, No. 23, 1999, pp. 3593-3595. doi:10.1063/1.125398
[21] S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff and J. L. Merz, “State Filling and Time-Resolved Photolumi- nescence of Excited States in InxGa1-xAs/GaAs Self- Assembled Quantum Dots,” Physical Review B, Vol. 54, No. 16, 1996, pp. 11548-11554. doi: 10.1103/PhysRevB.54.11548
[22] S. R. Jin, Y. L. Zheng and A. Z. Li, “Characterization of Photoluminescence Intensity and Efficiency of Free Ex- citons in Semiconductor Quantum Well Structures,” Jour- nal of Applied Physics, Vol. 82, No. 8, 1997, pp. 3870- 3973. doi: 10.1063/1.365689
[23] M. Abbarchi, C. Mastrandrea, T. Kuroda1, T. Mano, A. Vinattieri, K. Sakoda and M. Gurioli, “Poissonian Statis- tics of Excitonic Complexes in Quantum Dots,” Journal of Applied Physics, Vol. 106, No. 5, 2009, pp. 053504- 053509. doi:10.1063/1.3197848
[24] P. Dawson1, O. Rubel, S. D. Baranovskii, K. Pierz, P. Thomas and E. O. G?bel, “Temperature-Dependent Opti- cal Properties of InAs/GaAs Quantum Dots: Independent Carrier versus Exciton Relaxation,” Physical Review B, Vol. 72, No. 23, 2005, pp. 235301-235310. doi: 10.1103/PhysRevB.72.235301
[25] L. Zhang, Thomas F. Boggess, K. Gundogdu, Michael E. Flatté, D. G. Deppe, C. Cao and O. B. Shchekin, “Ex- cited-State Dynamics and Carrier Capture in InGaAs/GaAs Quantum Dots,” Applied Physics Letters, Vol. 79, No. 20, 2001, pp. 3320-3322. doi:10.1063/1.1418035
[26] J. Hashimoto, Y. Maeda and M. Nakayama, “Photoluminescence from Exciton-Exciton Scattering in a GaAs1?xNx Thin Film,” Applied Physics Letters, Vol. 96, No. 8, 2010, pp. 081910-081912. doi: 10.1063/1.3309695

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.