Hydrogen Incorporation in Undoped ZnO Nanoparticles

DOI: 10.4236/wjcmp.2011.14019   PDF   HTML   XML   3,946 Downloads   8,874 Views   Citations


Zinc Oxide nanoparticles in the size range of ~18 - 23 nm are prepared using wet chemical method. Hydrogen concentration in the samples was obtained by drying the precipitate at various temperatures. XRD pattern showed a single phase wurzite structure for ZnO nanoparticles. Average crystallite sizes and lattice parameters determined from XRD pattern showed a gradual increase with increasing dry temperature, while the lattice strain showed the opposite direction. Optical studies revealed the optical gap ranging from 3.05 - 3.24 eV. Hydrogen incorporation in the specimen was studied using infrared absorption measurement. Infrared absorption measurements revealed six hydrogen-related local vibrational modes in the wave number range from 2800 to 3600 cm–1. To remove hydrogen, some samples were annealed up to 800°C. Infrared absorption measurements showed that the local vibational modes disappeared. This shows that the observed local vibrational modes are due to the presence of hydrogen. The results of XRD and optical studies will be correlated with the results obtained from infrared absorption measurements.

Share and Cite:

S. Prakoso, "Hydrogen Incorporation in Undoped ZnO Nanoparticles," World Journal of Condensed Matter Physics, Vol. 1 No. 4, 2011, pp. 130-136. doi: 10.4236/wjcmp.2011.14019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K, Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono, “Thin-Film Transistor Fabricated in Single- Crystalline Transparent Oxide,” Science, Vol. 300, No. 5623, 2003, pp. 1269-1272. doi:10.1126/science.1083212
[2] J. Sun and H.-T. Wang, “Ab initio Investigations of Optical Properties of the High-Pressure Phases of ZnO,” Physical Review B, Vol. 71, No. 12, 2005, p. 125132. doi:10.1103/PhysRevB.71.125132
[3] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-Temperature Ul- traviolet Nanowire Nanolasers,” Science, Vol. 292, No. 5523, 2001, pp. 1897-1899. doi:10.1126/science.1060367
[4] C. T. Lee, Y. K. Su and H. M. Wang, “Effect of r.f. Sputtering Parameters on ZnO Films Deposited onto GaAs Substrates,” Thin Solid Films, Vol. 150, No. 2-3, 1987, pp. 283-289. doi:10.1016/0040-6090(87)90101-5
[5] B. M. Choudary, R. S. Mulukutla and K. J. Klabunde, “Benzylation of Aromatic Compounds with Different Crystallites of MgO,” Journal of American Chemical Society, Vol. 125, No. 8, 2003, pp. 2020-2021. doi:10.1021/ja0211757
[6] N. J. Harmon, W. O. Putikka and R. Joynt, “Theory of Electron Spin Relaxation in ZnO,” Physical Review B, Vol. 79, No. 11, 2009, p. 115204. doi:10.1103/PhysRevB.79.115204
[7] M. Rajalakshmi, A. K. Arora, B. S. Bendre and S. Ma- hamuni, “Optical Phonon Confinement in Zinc Oxide Nanoparticles,” Journal of Applied Physics, Vol. 87, No. 5, 2000, p. 2445. doi:10.1063/1.372199
[8] C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang and D. Z. Shen, “Enhanced Ultraviolet Emission and Op- tical Properties in Polyvinyl Pyrrolidone Surface Modi- fied ZnO Quantum Dots,” Journal of Applied Physics, Vol. 90, No. 9, 2001, p. 4489. doi:10.1063/1.1406973
[9] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, “Zener Model Description of Ferromagnetism in Zinc- Blende Magnetic Semiconductors,” Science, Vol. 287, No. 5455, 2000, pp. 1019-1022. doi:10.1126/science.287.5455.1019
[10] A. B. Djurisic, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge and H. Y. Chen, “Green, Yellow, and Orange Defect Emission from ZnO Nanostructures: Influence of Excita- tion Wavelength,” Applied Physics Letter, Vol. 88, No. 10, 2006, p. 103107. doi:10.1063/1.2182096
[11] Y. Zheng, Y. Cheng, Y. Wang, F. Bao, L. Zhou, X. Wei, Y. Zhang and Q. Zheng, “A Theoretical Study of the Ion- Molecule Chemistry of K+?X Complexes (X = O, O2, N2, CO2, H2O): Implications for the Upper Atmosphere,” Journal Physical Chemistry B, Vol. 110, No. 7, 2006, pp. 3093-3097. doi:10.1021/jp056617q
[12] Y. Zheng, Y. Cheng, Y. Wang, L. Zhou, F. Bao and C. Jia, “Metastable γ-MnS Hierarchical Architectures: Syn- thesis, Characterization, and Growth Mechanism,” Jour- nal Physical Chemistry B, Vol. 110 , No. 16, 2006, pp. 8284-8288. doi:10.1021/jp060351l
[13] Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu and Y. Zhu, “Luminescence and Photocatalytic Acti- vity of ZnO Nanocrystals: Correlation between Structure and Property,” Inorganic Chemistry, Vol. 46, No. 16, 2007, pp. 6675-6682. doi:10.1021/ic062394m
[14] C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide,” Physical Review Letter, Vol. 85, No. 5, 2000, pp. 1012-1015. doi:10.1103/PhysRevLett.85.1012
[15] P. K. Giri, S. Bhattacharyya, D. K. Singh, R. Kesava- moorthy, B. K. Panigrahi and K. G. M. Nair, “Correlation between Microstructure and Optical Properties of ZnO Nanoparticles Synthesized by Ball Milling,” Journal of Applied Physics, Vol. 102, No. 9, 2007, p. 093515. doi:10.1103/PhysRevLett.85.1012
[16] D. Gao, Z. Zhang, J. Fu, Y. Xu, J. Qi and D. Xue, “Room Temperature Ferromagnetism of Pure ZnO Nanoparti- cles,” Journal of Applied Physics, Vol. 105, No. 11, 2009, p. 113928. doi:10.1063/1.3143103
[17] A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Eng- elhard, C. Wang, J. Hays and A. Punnoose, “Ferromag- netism in Chemically Synthesized CeO2 Nanoparticles by Ni Doping,” Physical Review B, Vol. 76, No. 16, 2007, p. 165206. doi:10.1103/PhysRevB.76.165206
[18] N. H. Nickel and K. Fleischer, “Hydrogen Local Vibrational Modes in Zinc Oxide,” Physical Review Letter, Vol. 90, No. 19, 2003, p. 197402. doi:10.1103/PhysRevLett.90.197402
[19] R. Saleh, L. Munisa and W. Beyer, “Infrared Absorption in a-SiC:H Alloy Prepared by d.c. Sputtering,” Thin Solid Films, Vol. 426, No. 1-2, 2003, pp. 117-123. doi:10.1016/S0040-6090(03)00003-8
[20] M. O. Manasreh, J. M. Baranowski, K. Pakula, X. X. Jiang and J. Lin, “Localized Vibrational Modes of Car- bon-Hydrogen Complexes in GaN,” Applied Physics Letter, Vol. 75, No. 5, 1999, p. 659. doi:10.1063/1.124473
[21] D. M. Joseph, R. Balagopal, R. F. Hicks, L. P. Sadwick and K. L. Wang, “Observation of Carbon Incorporation during Gallium Arsenide Growth by Molecular Beam Epitaxy,” Applied Physics Letter, Vol. 53, No. 22, 1988, p. 2203. doi:10.1063/1.100281
[22] M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” Jour- nal of Applied Physics, Vol. 106, No. 7, 2009, p. 071101. doi:10.1063/1.3216464
[23] S. J. Jokela and M. D. McCluskey, “Structure and Stabil- ity of O-H Donors in ZnO from High-Pressure and Infra- red Spectroscopy,” Physical Review B, Vol. 72, No. 11, 2005, p. 113201. doi:10.1103/PhysRevB.72.113201
[24] E. V. Lavrov, J. Weber, F. B?rnnert, C. G. Van de Walle and R. Helbig, “Hydrogen-Related Defects in ZnO Stud- ied by Infrared Absorption Spectroscopy,” Physical Re- view B, Vol. 66, No. 16, 2002, p. 165205. doi:10.1103/PhysRevB.66.165205
[25] G. A. Shi, M. Stavola, S. J. Pearton, M. Thieme, E. V. Lav- rov and J. Weber, “Hydrogen Local Modes and Shallow Donors in ZnO,” Physical Review B, Vol. 72, No. 19, 2005, p. 195211. doi:10.1103/PhysRevB.72.195211
[26] E. V. Lavrov, F. B?rnnert and J. Weber, “Zinc Oxide—A Material for Micro- and Optoelectronic Applications,” In N. H. Nickel and E. Terukov, Eds., Nato Science Series, Springer, 2005, p. 133.
[27] E. V. Lavrov, F. B?rnnert and J. Weber, “Dominant Hy- drogen-Oxygen Complex in Hydrothermally Grown ZnO,” Physical Review B, Vol. 71, No. 3, 2005, p. 035205. doi:10.1103/PhysRevB.71.035205
[28] M. Naeem, S. K. Hasanain and A. L. Mumtaz, “Electrical Transport and Optical Studies of Ferromagnetic Cobalt Doped ZnO Nanoparticles Exhibiting a Metal-Insulator Transition,” Journal of Physics: Condensed Matter, Vol. 20, No. 2, 2008, p. 025210. doi:10.1088/0953-8984/20/02/025210
[29] A. Parra-Palomino, O. Perales-Perez, R. Singhal, M. To- mar, J. Hwang and P. M. Voyles, “Structural, Optical, and Magnetic Characterization of Monodisperse Fe-Do- ped ZnO Nanocrystals,” Journal of Applied Physics, Vol. 103, 2008, p. 07D121.
[30] L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Kri- shnan and A. Deepthy, “Size-Dependent Enhancement of Nonlinear Optical Properties in Nanocolloids of ZnO,” Journal of Applied Physics, Vol. 103, No. 3, 2008, p. 033105. doi:10.1063/1.2838178
[31] R. Al-Gaashani, S. Radiman, N. Tabet and A. R. Daud, “Ef- fect of Microwave Power on the Morphology and Optical Property of Zinc Oxide Nano-Structures Prepared via a Microwave-Assisted Aqueous Solution Method,” Materials Chemistry and Physics, Vol. 125, No. 3, 2011, pp. 846-852. doi:10.1016/j.matchemphys.2010.09.038

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.