Share This Article:

Atomistic Simulations of Formation of Elementary Zr-I Systems

Abstract Full-Text HTML Download Download as PDF (Size:273KB) PP. 104-108
DOI: 10.4236/ojpc.2011.13014    5,007 Downloads   8,583 Views   Citations


We report results of simulations on the formation of simple zirconium iodide molecules. Previous work by Wimmer et al. [1] explored the relationship between iodine and a zirconium surface. We investigate the reaction schemes through atomistic simulations to better understand the nature of Zr-I interactions through isolated molecules. The computed energy values of varying Zr-I systems suggests a strong binding mechanism between zirconium and iodine, and offer predictions of likely reaction products. The computed results predict condensation of volatile ZrI4 with ZrI2 to form Zr2I6

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Rossi and C. Taylor, "Atomistic Simulations of Formation of Elementary Zr-I Systems," Open Journal of Physical Chemistry, Vol. 1 No. 3, 2011, pp. 104-108. doi: 10.4236/ojpc.2011.13014.


[1] [1] E. Wimmer, R. Najafabadi, et al., “Ab Initio Calculations for Industrial Materials Engineering: Successes and Cha- llenges,” Journal of Physics: Condensed Matter, Vol. 22, No. 38, 2010, p. 384215. doi:10.1088/0953-8984/22/38/384215
[2] S. A. Nikulin and A. B. Rozhnov, “Corrosion Cracking of Zirconium Cladding Tubes (A Review). I. Methods of Study and Mechanisms of Fracture,” Metal Science and Heat Treatment, Vol. 47, No. 1-2, 2005, pp. 71-79. doi:10.1007/s11041-005-0034-2
[3] S. B. Goryachev, A. R. Gritsuk, et al., “Iodine Induced SCC of Zr Alloys at Constant Strain Rate,” Journal of Nuclear Materials, Vol. 199, No. 1, 1992, pp. 50-60. doi:10.1016/0022-3115(92)90439-R
[4] V. V. Likhanskii and L. V. Matweev, “The Development of the Crack Growth Model in Zirconium Claddings in Iodine Environment,” Nuclear Engineering and Design, Vol. 213, No. 2-3, 2002. pp. 133-140. doi:10.1016/S0029-5493(01)00516-7
[5] A. Serres, L. Fournier, et al., “The Effect of Iodine Content and Specimen Orientation on Stress Corrosion Crack Growth Rate in Zircaloy-4,” Corrosion Science, Vol. 52, No. 6, 2010, pp. 2001-2009. doi:10.1016/j.corsci.2010.02.008
[6] I. Schuster and C. Lemaignan, “Influence of Texture on Iodine-Induced Stress Corrosion Cracking of Zircaloy-4 Cladding Tubes,” Journal of Nuclear Materials, Vol. 189, No. 2, 1992, pp. 157-166. doi:10.1016/0022-3115(92)90528-S
[7] P. P. S. Sidky, “Iodine Stress Corrosion Cracking of Zircaloy Reactor Cladding: Iodine Chemistry (a Re- view),” Journal of Nuclear Materials, Vol. 256, No. 1, 1998, pp. 1-17. doi:10.1016/S0022-3115(98)00044-0
[8] F. Lemoine, “High Burnup Fuel Behavior Related to Fission Gas Effects under Reactivity Initiated Accidents (RIA) Conditions,” Journal of Nuclear Materials, Vol. 248, No. 1, 1997, pp. 238-248. doi:10.1016/S0022-3115(97)00157-8
[9] P. P. Rudling, R. Adamson, et al., “High Burnup Fuel Issues,” Nuclear Engineering Technology, Vol. 40, 2008, 1-8.
[10] K. D. Sinel’nikov, F. I. Busol and G. I. Stepanova, “Problem of the Iodine Method of Purification of Zir- conium,” Atomic Energy, Vol. 4, 1958. pp. 221-227.
[11] S. Y. Park, et al., “Crack Initiation and Propagation Behavior of Zirconium Cladding under an Environment of Iodine-Induced Stress Corrosion,” Metals and Ma- terials International, Vol. 13, No. 2, 2007, pp. 155-163. doi:10.1007/BF03027567
[12] D. H. Guthrie and J. D. Corbett, “Synthesis and Structure of an Infinite-Chain Form of Zr I2 (alpha),” JSSC, Vol. 37, 1981, pp. 256-263.
[13] A. Lachgar, D. S. Dudis and J. D. Corbett, “Revision of the Structure of Zirconium Triiodide. The Presence of Metal Dimers,” Inorganic Chemistry, Vol. 29, No. 12, 1990, pp. 2242-2246. doi:10.1021/ic00337a013
[14] B. Krebs, G. Henkel and M. Dartmann, “Kristallstruktur von Zirkoniumtetrajodid Zr I4. Ein Neuer A B4― Strukturtypp,” Acta Crystallographica Section B, Vol. 35, 1979, pp. 274-278. doi:10.1107/S0567740879003344
[15] S. B. Farina, G. S. Duffo and J. R. Galvele, “Localized Corrosion of Zirconium and Zircaloy-4 in Iodine Alco- holic Solutions,” LAAR, Vol. 32, 2002, pp. 295-298.
[16] S. B. Farina, G. S. Duffo and J. R. Galvele, “Stress Corrosion Cracking of Zircaloy-4 in Halide Solutions. Effect of Temperature,” Materials Research, Vol. 5, No. 2, 2002, pp. 107-112. doi:10.1590/S1516-14392002000200004
[17] P. P. Jacques, F. Lefebvre and C. Lemaignan, “Defor- mation-Corrosion Interactions for Zr Alloys during I- SCC Crack Initiation. Part I: Chemical Contributions,” Journal of Nuclear Materials, Vol. 264, No. 3, 1999, pp. 239-248. doi:10.1016/S0022-3115(98)00501-7
[18] M. W. Schmidt, K. K. Baldridge, et al., “General Atomic and Molecular Electronic Structure System,” Journal of Computational Chemistry, Vol. 14, No. 11, 1993, pp. 1347-1363. doi:10.1002/jcc.540141112
[19] M. S. Gordon and M. W. Schmidt, “Advances in Elec- tronic Structure Theory: GAMESS a Decade Later,” In: C. E. Dykstra, G. Frenking, et al., Eds., Theory and App- lications of Computational Chemistry, the First Forty Years, Elsevier, Amsterdam, 2005, pp. 1347-1363. doi:10.1016/B978-044451719-7/50084-6
[20] A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics, Vol. 98, 1993, pp. 5648-5642. doi:10.1063/1.464913
[21] P. P. J. Stephens, F. J. Devlin, et al., “Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields,” The Journal of Physical Chemistry, Vol. 98, No. 45, 1994, pp. 11623- 11627. doi:10.1021/j100096a001
[22] R. H. Hertwig and W. Koch, “On the Parameterization of the Local Correlation Functional. What Is Becke- 3-LYP?” Chemical Physics Letters, Vol. 268, No. 5-6, 1997, pp. 345-351. doi:10.1016/S0009-2614(97)00207-8
[23] W. J. Stevens, H. Basch and M. Krauss, “Compact Effective Potentials and Efficient Shared-Exponent Basis Sets for the First- and Second-Row Atoms,” Journal of Chemical Physics, Vol. 81, No. 12, 1984, pp. 6026-6033. doi:10.1063/1.447604
[24] W. J. Stevens, M. Krauss, H. Basch and P. P. G. Jasien, “Relavtivistic Compact Effective Potentials and Efficient, Shared-Exponent Basis-Sets for the 3rd-Row, 4th-Row and 5th-Row Atoms,” Canadian Journal of Chemistry, Vol. 70, No .2, 1992, pp. 612-630. doi:10.1139/v92-085
[25] T. R. Cundari and W. J. Stevens, “Effective Core Potential Methods for the Lanthanides,” Journal of Chemical Physics, Vol. 98, No. 7, 1993, pp. 5555-5565. doi:10.1063/1.464902
[26] F. I. Busol, “Kinetics of the Reduction of ZrI4 Vapors by Metallic Zirconium,” Russian Journal of Physical Che- mistry, Vol. 33, 1959, pp. 799-807.
[27] M. W. Schmidt and M. S. Gordon, “The Construction and Interpretation of MCSCF Wavefunctions,” Annual Review of Physical Chemistry, Vol. 29, 1998, pp. 233- 266. doi:10.1146/annurev.physchem.49.1.233
[28] B. O. Roos, “The Multiconfiguration SCF Method,” In: S. W. Diercksen, Ed., Methods in Computational Molecular Physics, D. Reidel, Dordrecht, 1983, pp. 161-187.
[29] J. Olsen, D. L. Yeager and P. P. Jorgensen, “Optimization and Characterization of a MCSCF State,” Advances in Chemical Physics, Vol. 54, 1983, pp. 1-176. doi:10.1002/9780470142783.ch1
[30] H. -J. Werner, “Matrix Formulated Direct MCSCF and Multiconfiguration Reference CI Methods,” Advances in Chemical Physics, Vol. 69, 1987, pp. 1-62. doi:10.1002/9780470142943.ch1
[31] R. Shepard, “The MCSCF Method,” Advances in Che- mical Physics, Vol. 69, 1987, pp. 63-200. doi:10.1002/9780470142943.ch2

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.