Identification of AFLP Markers Linked to Leaf Rust Resistance Genes Using Near Isogenic Lines of Wheat

DOI: 10.4236/ajps.2011.25082   PDF   HTML     3,365 Downloads   5,933 Views   Citations


The present investigation was undertaken to find molecular markers linked to leaf rust resistance genes, Lr9 and Kharchia local mutant KLM4-3B. Preliminary AFLP analysis was carried out with different stocks, a survey of primer combinations with different selective nucleotide indicated that for each primer combination, the number of scorable loci ranged from 34 to 123. Only a limited primer combination used in the set of parental and near isogenic lines showed a high level of polymorphism for AFLP marker. Putative AFLP marker were found to be linked to Lr9, Lr19 and KLM4-3B. The alien genes were readily identified.

Share and Cite:

N. Dhillon and H. Dhaliwal, "Identification of AFLP Markers Linked to Leaf Rust Resistance Genes Using Near Isogenic Lines of Wheat," American Journal of Plant Sciences, Vol. 2 No. 5, 2011, pp. 683-687. doi: 10.4236/ajps.2011.25082.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. G. Eversmeyer and L. E. Browder, “Effect of Leaf and Stem Rust on 1973 Kansaswheat Yields,” Plant Disease Reporter, Vol. 58, No. 5, 1974, pp. 469-471.
[2] R. G. Saini and A. K. Gupta, “Genes for Resistance to Brown Rust Puccinia recondita) in Wheat. II. Lr Genes in Frontana, WG138 and E6360,” Cereal Research Communications, Vol. 7, 1979, pp. 289-291.
[3] D. Anand, R. G. Saini and A. K. Gupta, “Slow Leaf Rust Development Due to Combination of Some Genes in Wheat,” Plant Disease Reporter, Vol. 3, 1988, p. 97.
[4] M. Seck, A. P. Roelfs and P. S. Teng , “Effect of Leaf Rust Puccinia recondite Triticii on Yield of Four Isogenic Wheat Lines,” Crop Protection, Vol. 7, No. 1, 1988, pp. 39-43. doi:10.1016/0261-2194(88)90036-1
[5] K. V. S. Rao, J. P. Snow and G. T. Berggren, “Effect or Growth Stage and Initial Inoculum Level on Leaf Rust Development and Yield Loss Caused by Puccinia recondita f. sp. tritici,” Journal of Phytopathology, Vol. 127, No. 3, 1989, pp. 200-210. doi:10.1111/j.1439-0434.1989.tb01130.x
[6] R. P. Singh, J. Huerta-Espino, W. Pfeiffer and P. F. Lopez, “Occurrence and Impact of a New Leaf Rust Race on Durum Wheat in Northwestern Mexico from 2001 to 2003,” Plant Disease, Vol. 88, No. 7, 2004, pp. 703-708. doi:10.1094/PDIS.2004.88.7.703
[7] J. A. Appel, E. DeWolf, W. W. Bockus and T. Todd, “Kansas Cooperative Plant Disease Survey Report Preliminary Kansas Wheat Disease Loss Estimates,” August 11, 2009. http:// center/plant_protection/Plant%20Disease20Reports/2009KSWheatDiseaseLossEstimates.pdf. Accessed 29 November 2010.
[8] G. V. Volkova, T. P. Alekseeva, L. K. Anpilogova, M. V. Dobryanskaya, O. F. Vaganova and D. A. Kol’bin, “Phytopathological Characteristics of Leaf Rust Resistance of New Winter Wheat Varieties,” Russian Agricultural Sciences, Vol. 35, No. 3, 2009, pp. 168-171. doi:10.3103/S1068367409030112
[9] J. H. Espino, R. P. Singh, S. Germa’n, B. D. McCallum, R. F. Park, Q. W. S. Chen, C. Bhardwaj and H. Goyeau, “Global Status of Wheat Leaf Rust Caused by Puccinia triticina,” Euphytica, Vol. 179, No. 1, 2011, pp. 143-160. doi:10.1007/s10681-011-0361-x
[10] I. Lowe, D. Cantu and J. Dubcovsky, “Durable Resistance to the Wheat Rusts: Integrating Systems Biology and Traditional Phenotype-Based Research Methods to Guide the Deployment of Resistance Genes,” Euphytica, Vol. 179, No. 1, 2011, pp. 69-79. doi:10.1007/s10681-010-0311-z
[11] L. Huang, L. Q. Zhang, B. L. Liu, Z. H. Yan, B. Zhang, H. G. Y. L Zhang and D. C. Liu, “Molecular Tagging of a Stripe Rust Resistance Gene in Aegilops Tauschii,” Euphytica, Vol. 179, No. 2, 2011, pp. 313-318. doi:10.1007/s10681-010-0330-9
[12] M. Baum, E. S. Laguadah and R. Appels, “Wide Crosses in Cereals,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 43, 1992, pp. 117-143. doi:10.1146/annurev.pp.43.060192.001001
[13] Z. A. Pretorius and C. M. Bender, “First Report of Virulence for the Wheat Leaf Rust (Puccinia triticina) Resistance Gene Lr32 in South Africa,” Plant Disease, Vol. 94, No. 3, 2010, pp. 381. doi:10.1094/PDIS-94-3-0381A
[14] S. C. Bhardwaj, M. Prashar, S. K. Jain, S. Kumar, Y. P. Sharma, “Physiologic Specialization of Puccinia Triticina on Wheat (Triticum Species) in India,” Indian Journal of Agricultural Sciences, Vol. 80, 2010, pp. 805-881.
[15] E. R. Sears, “The Transfer of Leaf Rust Resistance from Aegilops umbellulata into Wheat,” Brookhaven Symposia in Biology, Vol. 9, 1956, pp. 1-21.
[16] A. S. Soliman, E. Y. Heyne and C. O. Johnston, “Resistance to Leaf Rust in Wheat Derived from Chinese Aegilops umbellulata Translocation Lines,” Crop Science, Vol. 3, 1963, pp. 254-256. doi:10.2135/cropsci1963.0011183X000300030025x
[17] S. L. Dellaporta, J. Wood and J. B. Hicks, “A Plant DNA Mini Preparation. Version 11,” Plant Molecular Biology Reporter, Vol. 1, No. 4, 1983, pp. 19-21. doi:10.1007/BF02712670
[18] P. Vos, R. Hogers, M. Bleeker, M. Reijans, T. V. D. Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau, “AFLP: A New Technique for DNA Fingerprinting” Nucleic Acids Research, Vol. 23, No. 21, 1995, pp. 4407-4414. doi:10.1093/nar/23.21.4407
[19] D. J. Mackill, Z. Zang, E. D. Redona and P. M. Colowit, “Level of Polymorphism and Genetic Mapping of AFLP Markers in Rice,” Genome, Vol. 39, No. 5, 1996, pp. 967-977. doi:10.1139/g96-121
[20] Y. Cho, M. Blair, O. Panaud and S. R. McCouch, “Cloning and Mapping of Variety-Specific Rice Genomic Sequences: Amplified Fragment Length Polymorphism (AFLP) from Silver-Staired Polyacrylamide Gels,” Genome, Vol. 40, 1996, pp. 84-91.
[21] J. J. Lin, J. Kuo and J. Ma, “A PCR-Based DNA Fingerprinting Technique: AFLP for Molecular Typing of Bacteria,” Nucleic Acids Research, Vol. 4, No. 18, 1996, pp. 3649- 3650. doi:10.1093/nar/24.18.3649
[22] M. Maheswaran, P. K. Subudhi, S. Nandi, J. C. Xu, A. Parco, D. C. Yang and N. Huang, “Polymorphism, Distribution and Segregation of AFLP Markers in a Double Haploid Rice Population,” Theoretical and Applied Genetics, Vol. 94, No. 1, 1996, pp. 39-45. doi:10.1007/s001220050379
[23] J. Becker, P. Vos, M. Kuiper, F. Salamini and M. Heun, “Combined Mapping of AFLP and RFLP Markers in Barley,” Molecular and General Genetics, Vol. 249, No. 1, 1995, pp. 65-73. doi:10.1007/BF00290237
[24] C. M. Thomas, P. Vos, M. Zabeau, D. A. Jones, K. A. Norcott, B. P. Chadwick and J. D. G. Jones, “Identification of Amplified Restriction Fragment Polymorphism (AFLP) Markers Tightly Linked to the Tomato Cf-9 Gene for Resistance to Cladosporium fulvum,” Plant Journal, Vol. 8, No. 5, 1995, pp. 785-794. doi:10.1046/j.1365-313X.1995.08050785.x
[25] E. D. Redona, L. R. Hipotita, R. A. Caldo and L. S. Sebastian, “Utilization of AFLPs for Genetic Diversity Analysis. The Case for Progenitor Cultivars of Modern Philippine Rice Varieties,” Asian Rice Biotechnology Network Course on AFLPs for Rice Improvement, Philippine Rice Research Institute (Phil Rice)m Maligaya, Nunoz, Nueva Ecija 3119, IRRI, 1996.
[26] C. Bachem, W. B. Hoeven, R. S. Vander, S. M. Bruijn, D. Vrueugdenkil, M. Zabeau and R. G. F. Visser, “Visualization of Differential Gene Expression Using a Novel Method of RNA Fingerprinting Based on AFLP : Analysis of Gene Expression during Potato Tuber Development,” Plant Journal, Vol. 9, No. 5, 1996, pp. 745-753. doi:10.1046/j.1365-313X.1996.9050745.x
[27] P. K. Subudhi, S. Nandi, C. Casal, S. S. Virani and N. Huang, “Classification of Rice Germplasm II: High Resolution Fingerprinting of Cytoplasmic Genetic Male Sterile (CMS) Lines With AFLP,” Theoretical and Applied Genetics, Vol. 94, 1996, pp. 160-169.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.