Temperature and Doping Dependencies of the Transport Properties within GaN and GaAs

DOI: 10.4236/jmp.2011.211164   PDF   HTML     5,204 Downloads   9,514 Views   Citations


Temperature and doping dependencies of the transport properties have been calculated using an ensemble Monte Carlo simulation. We consider the polar optical phonon, acoustic phonons, piezoelectric, intervalley scatterings and Charged impurity scattering model of Ridley; furthermore, a non nonparabolic three-valley model is used. Our simulation results have shown that the electron velocity in GaN is less sensitive to changes in temperature than that associated with GaAs. Also it is found that GaN exhibits high peak drift velocity at room temperature, 2.8 × 105m/s, at doping concentration of 1 × 1020 m–3and the electron drift velocity relaxes to the saturation value of 1.3 × 105 m/s which is much larger than that of GaAs. The weakening of the phonon emission rate at low temperature explains the extremely high low field mobility. Our results suggest that the transport characteristics of GaN are superior to that of GaAs, over a wide range of temperatures, from 100 K to 700 K, and doping concentrations, up to 1 × 1025 m–3

Share and Cite:

F. El-Ela and A. Mohamed, "Temperature and Doping Dependencies of the Transport Properties within GaN and GaAs," Journal of Modern Physics, Vol. 2 No. 11, 2011, pp. 1324-1330. doi: 10.4236/jmp.2011.211164.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. N. Mohammed and H. Morkoc, “Progress and Prospects of Group-III Nitride Semiconductors,” Progress in Quantum Electronics, Vol. 20, No. 5-6, 1996, pp. 361- 525. doi:10.1016/S0079-6727(96)00002-X
[2] B.Gelmont, K. Kim and M. Shur, “Monte Carlo Simulation of Electron Transport in Gallium Nitride,” Journal of Applied Physics, Vol. 74, No. 3, 1993, pp. 1818-1821. doi:10.1063/1.354787
[3] S. K. O’Leary, B. E. Foutz, M. S. Shur and L. F. Eastman, “Steady-State and Transient Electron Transport within the III–V Nitride Semiconductors, GaN, AlN, and InN: A Review,” Journal of Material Science: Materials in Electronics, Vol. 17, No. 2, 2006, pp. 87-126. doi:10.1007/s10854-006-5624-2
[4] S. Adachi, “GaAs and Related Materials, Bulk semiconducting and Superlattice Properties,” World Scientific, Singapore, 1994. doi:10.1142/9789812705709
[5] M. A. Littlejohn, J. R. Hauser and T. H. Glisson, “Monte Carlo Calculation of Velocity-Field Relationship for Gallium Nitride,” Applied Physics Letters, Vol. 26, No. 11, 1975, pp. 625-627. doi:10.1063/1.88002
[6] N. S. Mansour, K. W. Kim and M. A. Littlejohn, “Theoretical Study of Electron Transport in Gallium Nitride,” Journal of Applied Physics, Vol. 77, No. 6, 1995, pp. 2834-2836. doi:10.1063/1.358696
[7] J. Kolník, I. H. Oguzman, K. F. Brennan, R. Wang, P. P. Ruden and Y. Wang, “Electronic Transport Studies of Bulk Zinc Blende and Wurtzite Phases of GaN Based on an Ensemble Monte Carlo Calculation including a Full Zone Band Structure,” Journal of Applied Physics, Vol. 78, No. 2, 1995, pp. 1033-1038. doi:10.1063/1.360405
[8] U. V. Bhapkar and M. S. Shur, “Monte Carlo Calculation of Velocity-Field Characteristics of Wurtzite GaN,” Journal of Applied Physics, Vol. 82, No. 4, 1997, pp. 1649-1655. doi:10.1063/1.365963
[9] J. D. Albrecht, R. P. Wang, P. P. Ruden, M. Farahmand and K. F. Brennan, “Electron Transport Characteristics of GaN for High Temperature Device Modeling,” Journal of Applied Physics, Vol. 83, No. 9, 1998, pp. 4777- 4781. doi:10.1063/1.367269
[10] E. Bellotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht and P. P. Ruden, “Ensemble Monte Carlo Study of Electron Transport in Wurtzite InN,” Journal of Applied Physics, Vol. 85, No. 2, 1999, pp. 916-923. doi:10.1063/1.369211
[11] S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar and L. F. Eastman, “Electron Transport in Wurtzite Indium Nitride,” Journal of Applied Physics, Vol. 83, No. 2, 1998, pp. 826-829. doi:10.1063/1.366641
[12] B. E. Foutz, L. F. Eastman, U. V. Bhapkar and M. S. Shur, “Comparison of High Field Electron Transport in GaN and GaAs,” Applied Physics Letters, Vol. 70, No. 21, 1997, pp. 2849-2851. doi:10.1063/1.119021
[13] B. E. Foutz, S. K. O’Leary, M. S. Shur and L. F. Eastman, “Transient Electron Transport in Wurtzite GaN, InN and AlN,” Journal of Applied Physics, Vol. 85, No. 11, 1999, pp. 7727-7734. doi:10.1063/1.370577
[14] D. K. Ferry, “High Field Transport in Wide-Band-Gap Semiconductrors,” Physical Review B, Vol. 12, No. 6, 1975, pp. 2361-2369. doi:10.1103/PhysRevB.12.2361
[15] M. Wraback, H. Shen, J. C. Carrano, T. Li, J. C. Campbell, M. J. Schurman and I. T. Ferguson, “Time-Resolved Electroabsorption Measurement of the Electron Velocity-Field Characteristic in GaN,” Applied Physics Letters, Vol. 76, No. 9, 2000, pp. 1155-1157. doi:10.1063/1.125968
[16] E. G. Brazel, M. A. Chin, V. Narayanamurti, D. Kapolnek, E. J. Tarsa and S. P. DenBaars, “Ballistic Electron Emission Microscopy Study of Transport in GaN Thin Films,” Applied Physics Letters, Vol. 70, No. 3, 1997, pp. 330-332. doi:10.1063/1.118406
[17] R. W. Hockney and J. W. Eastwood, “Computer Simulation Using Particles,” Bristol, Adam-Hilger, 1988. doi:10.1887/0852743920
[18] B. K. Ridley, “Quantum Processes in Semiconductors,” 3rd Edition, Oxford, Clarendon, 1993.
[19] C. Jacoboni and P. Lugli, “The Monte Carlo Method for Semiconductor Device Simulation,” Springer-Verlag, New York, 1989. doi:10.1007/978-3-7091-6963-6
[20] B. K. Ridley, “Reconciliation of the Conwell-Weisskopf and Brooks-Herring Formulae for Charged-Impurity Scattering in Semiconductors: Third-Body Interference,” Journal of Physics C: Solid State Physics, Vol. 10, No. 10, 1977, pp. 1589-1593. doi:10.1088/0022-3719/10/10/003
[21] B. K. Ridley, “Statistically Screened Impurity Scattering in Modulation-Doped Structures,” Semiconductor science and technology, Vol. 3, No. 2, 1988, pp. 111-115. doi:10.1088/0268-1242/3/2/006
[22] T. G. Van de Roer and F. P. Widdershoven, “Ionized Impurity Scattering in Monte Carlo Calculations,” Journal of Applied Physics, Vol. 59, No. 3, 1986, pp. 813- 8150. doi:10.1063/1.336603
[23] H. Brooks and C. Herring, “Scattering by Ionized Impurities in Semiconductors,” Physical Review, Vol. 83, 1951, pp. 879-887.
[24] E.M. Conwell and V.F. Weisskopf, “Theory of Impurity Scattering in Semiconductors,” Physical Review, Vol. 77, No. 3, 1950, pp. 388-390. doi:10.1103/PhysRev.77.388
[25] M. A. Littlejohn, J. R. Hausersand and T. H. Glisson,” Velocity-Field Characteristics of GaAs with Conduction-Band Ordering,” Journal of Applied Physics, Vol. 48, No. 11, 1977, pp. 4587-4590. doi:10.1063/1.323516
[26] W. R. L. Lambrecht and B. Segall, “Band Structure of Pure GaN,” In: J. H. Edgar, Ed., Properties of Group III Nitrides, No 11 EMIS Datareviews Series, Inspec, London, 1994, pp. 141-150.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.