Effect of Magnetohydrodynamic on Thin Films of Unsteady Micropolar Fluid through a Porous Medium
Gamal M. Abdel-Rahman
.
DOI: 10.4236/jmp.2011.211160   PDF   HTML     6,807 Downloads   11,742 Views   Citations

Abstract

In This paper, we deal with the study of the effect of magnetohydrodynamic on thin films of unsteady micropolar fluid through a porous medium. These Thin films are considered for three different geometries. The governing continuity, momentum and angular momentum equations are converted into a system of non-linear ordinary differential equations by means of similarity transformation. The resulting system of coupled non-linear ordinary differential equations is solved numerically by using shooting method. A representative set of numerical results in the three thin film flow problems for velocity and micro-rotation profiles are discussed and presented graphically. A comprehensive parametric study is carried out to show the effects of the micropolar fluid parameters, magnetic field parameter, permeability parameter and etc. on the obtained solutions.

Share and Cite:

G. Abdel-Rahman, "Effect of Magnetohydrodynamic on Thin Films of Unsteady Micropolar Fluid through a Porous Medium," Journal of Modern Physics, Vol. 2 No. 11, 2011, pp. 1290-1304. doi: 10.4236/jmp.2011.211160.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. C. Tan and T. Masuoka, “Stokes First Problem for a Second Grade Fluid in a Porous Half-Space with Heated Boundary,” International Journal of Non-Linear Mechanics, Vol. 40, No. 4, 2005, pp. 515-522. doi:10.1016/j.ijnonlinmec.2004.07.016
[2] W.C. Tan and. T. Masuoka, “Stokes First Problem for an Oldroyd-B Fluid in a Porous Half-Space,” Physics of Fluids, Vol. 17, No. 2, 2005, pp. 3101-3107. doi:10.1063/1.1850409
[3] C. Fetecau and C. Fetecau, “Decay of a Potential Vortex in an Oldroyd-B Fluid,” International Journal of Engineering Science, Vol. 43, No. 3, 2005, pp. 340-351. doi:10.1016/j.ijengsci.2004.08.013
[4] C. Fetecau and C. Fetecau, “Unsteady Flows of Oldroyd-B Fluids in a Channel of Rectangular Cross- Section,” International Journal of Non-Linear Mechanics, Vol. 40, No. 9, 2005, pp. 1214-1219. doi:10.1016/j.ijnonlinmec.2005.05.005
[5] C. Fetecau and C. Fetecau, “Starting Solutions for Some Unsteady Unidirectional Flows of a Second Grade Fluid,” International Journal of Engineering Science, Vol. 43, No. 10, 2005, pp. 781-789. doi:10.1016/j.ijengsci.2004.12.009
[6] T. Hayat, S. Nadeem, S. Asghar and A. M. Siddiqui, “Unsteady MHD Flow Due to Eccentrically Rotating Porous Disk and a Third Grade Fluid at Infinity,” International Journal of Applied Mechanics and Engineering, Vol. 11, No. 2, 2006, pp. 415-419.
[7] T. Hayat and A. H. Kara, “Couette Flow of a Third Grade Fluid with Variable Magnetic Field,” Mathematical and Computer Modelling, Vol. 43, No. 1-2, 2006, pp. 132-137. doi:10.1016/j.mcm.2004.12.009
[8] T. Hayat, S. B. Khan and M. Khan, “The Influence of Hall Current on the Rotating Oscillating Flows of an Oldoyd-B Fluid in Porous Medium,” Nonlinear Dynamics, Vol. 47, No. 4, 2007, pp. 353- 362. doi:10.1007/s11071-006-9034-z
[9] C. I. Chen, C. K. Chen and Y. T. Yang, “Unsteady Unidirectional Flow of an Oldoyd-B Fluid in a Circular Duct with Different Given Volume Flow Rate Conditions,” Heat and Mass Transfer, Vol. 40, 2004, pp. 203-209. doi:10.1007/s00231-002-0350-7
[10] C. I. Chen, C. K. Chen and Y. T. Yang, “Unsteady Unidirectional Flow of a Second Grade Fluid between the Parallel Plates with Different Given Volume Flow Rate Conditions,” Applied Mathematics and Computation, Vol. 137, No. 2, 2003, pp. 437-450. doi:10.1016/S0096-3003(02)00149-2
[11] A. C. Eringen, “Simple Microfluids,” International Journal of Engineering Science, Vol. 2, No. 2, 1964, pp. 205-217. doi:10.1016/0020-7225(64)90005-9
[12] A. C. Eringen, “Theory of Micropolar Fluids,” International Journal of Mathematics and Mechanics, Vol. 16, 1966, pp. 1-18.
[13] A. C. Eringen, “Theory of Micropolar Fluids,” Journal of Mathematical Analysis and Applications, Vol. 38, No. 2, 1972, pp. 480-496. doi:10.1016/0022-247X(72)90106-0
[14] A.C. Eringen, “Microcontinuum Field Theories. II: Fluent Media,” Springer, New York, 2001.
[15] Y. Y. Lok, P. Phang, N. Amin and I. Pop, “Unsteady Boundary Layer Flow of a Micropolar Fluid near the Forward Stagnation Point of a Plane Surface,” International Journal of Engineering Science, Vol. 41, 2003, pp. 173-186. doi:10.1016/S0020-7225(02)00146-5
[16] R. Nazar, N. Amin, D. Filip and I. Pop, “Stagnation Point Flow of a Micropolar Fluid towards a Stretching Sheet,” International Journal of Non-Linear Mechanics, Vol. 39, No. 7, 2004, pp. 1227-1235. doi:10.1016/j.ijnonlinmec.2003.08.007
[17] A. M. Siddiqui, R. Mahmood and Q. K. Ghori, “Homotopy Perturbation Method for Thin Film Flow of a Third Grade Fluid down an Inclined Plane,” Chaos, Solitons and Fractals, Vol. 35, No. 1, 2008, pp. 140-147. doi:10.1016/j.chaos.2006.05.026
[18] A. Moncef, “Numerical Study for Micropolar Flow over a Stretching Sheet,” Computational Materials Science, Vol. 38, No. 4, 2007, pp. 774-780. doi:10.1016/j.commatsci.2006.05.014
[19] A. M. Siddiqui, R. Ahmad and Q. K. Ghori, “Thin Film Flow of Non-Newtonian Fluid on a Moving Belt,” Chaos, Solitons and Fractals, Vol. 33, 2007, pp. 1006-1016. doi:10.1016/j.chaos.2006.01.101
[20] A. M. Siddiqui, R. Mahmood and Q. K. Ghori, “Homotopy Perturbation Method for Thin Film Flow of a Fourth Grade Fluid down a Vertical Cylinder,” Physical Letters A, Vol. 352, 2006, pp. 404-410. doi:10.1016/j.physleta.2005.12.033
[21] M. Sajid, N. Ali and T. Hayat, “On Exact Solutions for Thin Film Flows of a Micropolar Fluid,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 2, 2009, pp. 451-461. doi:10.1016/j.cnsns.2007.09.003
[22] M. Hameed and S. Nadeem, “Unsteady MHD Flow of a Non-Newtonian Fluid on a Porous Plate,” Journal of Mathematical Analysis and Applications, Vol. 325, 2007, pp. 724-733. doi:10.1016/j.jmaa.2006.02.002
[23] G. M. Abdel-Rahman, “Studying Effect of MHD on Thin Films of a Micropolar Fluid,” Physica B, Vol. 404, No. 21, 2009, pp. 3859- 3866. doi:10.1016/j.physb.2009.07.112
[24] G. Lukaszewicz, “Micropolar Fluids: Theory and Applications,” Birkhauser, Basel, 1999.
[25] D. A. S. Ress and I. Pop, “Free Convection Boundary Layer Flow of a Micropolar Fluid from a Vertical Flat Plate,” IMA Journal of Applied Mathematics, Vol. 61, 2001, pp. 179-191. doi:10.1093/imamat/61.2.179
[26] G. Ahmadi, “Self-Similar Solution of Incompressible Micropolar Boundary Layer Flow over a Semi-Infinite Flat Plate,” International Journal of Engineering Science, Vol. 14, No. 7, 1976, pp. 639-646. doi:10.1016/0020-7225(76)90006-9
[27] S. K. Jena and M. N. Mathur, “Similarity Solutions for Laminar Free Convection Flow of a Thermo-Micropolar Fluid Past a Non-Isothermal Flat Plate,” International Journal of Engineering Science, Vol. 19, No. 11, 1981, pp. 1431-1439. doi:10.1016/0020-7225(81)90040-9
[28] G. S. Guram and A. C. Smith, “Stagnation Flows of Micropolar Fluids with Strong and Weak Interactions,” Computers & Mathematics with Applications, Vol. 6, No. 2, 1980, pp. 213-233. doi:10.1016/0898-1221(80)90030-9
[29] A. Ishak, R. Nazar and I. Pop, “Magnetohydrodynamic (MHD) Flow and Heat Transfer Due to a Stretching Cylinder,” Energy Conversion and Management, Vol. 49, No. 11, 2008, pp. 3265-3269. doi:10.1016/j.enconman.2007.11.013

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.