A Novel and Simple Route to Synthesis Nanocrystalline Titanium Carbide Via the Reaction of Titanium Dioxide and Different Carbon Source
Youjian Chen, Yongyong Deng, Hong Zhang, Lihua Wang, Jianhua Ma
.
DOI: 10.4236/msa.2011.211215   PDF    HTML     6,836 Downloads   11,299 Views   Citations

Abstract

A novel and simple route for synthesizing nanocrystalline ceramic powders in molten salt was introduced in the paper. Titanium carbide (TiC) was prepared via the reaction of metallic magnesium powders with titanium dioxide (TiO2), carbon source and molten salt in an autoclave at 650°C. Carbon source (oxalic acid and citric acid) in this paper was stable, low toxic and cheap. X-ray powder diffraction (XRD) patterns indicated that the products were cubic TiC. Scanning electron microscopy (SEM) images showed that the samples consisted of particles with an average size of 200 nm and 100 nm in diameter, respectively. Energy Dispersive Spectrometer (EDS) analysis of the samples suggested the products contained carbon and titanium elements. The product was also studied by the thermogravimetric analysis (TGA). It had good thermal stability and oxidation resistance below 350°C in air.

Share and Cite:

Y. Chen, Y. Deng, H. Zhang, L. Wang and J. Ma, "A Novel and Simple Route to Synthesis Nanocrystalline Titanium Carbide Via the Reaction of Titanium Dioxide and Different Carbon Source," Materials Sciences and Applications, Vol. 2 No. 11, 2011, pp. 1622-1626. doi: 10.4236/msa.2011.211215.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. K. Stroms, “The Refractory Carbides, Refractory Ma- terials Series,” Academic Press, New York, 1967.
[2] L. E. Toth, “Transition Metal Carbides and Nitrides,” Academic Press, New York, 1971.
[3] H. O. Pierson. “Handbook of Refractory Carbides and Nitrides,” Noyes Publications, Park Ridge, 1996.
[4] M. Nagai, T. Miyao and T. Tuboi, “Hydrodesulfurization of Dibenzothiophene on Alumina-Supported Molybde- num Nitride,” Catalysis Letters, Vol. 18, No. 1-2, 1993, pp. 9-14. doi:10.1007/BF00769493
[5] J. J. Gangler, “Some Physical Properties of Eight Re- fractory Oxides and Carbides,” Journal of the American Ceramic Society, Vol. 33, No. 12, 1950, pp. 367-374. doi:10.1111/j.1151-2916.1950.tb14155.x
[6] Y. Shin, X. S. Li, C. Wang, J. R. Coleman and G. R. Exarhos, “Synthesis of Hierarchical Titanium Carbide from Titania-Coated Cellulose Paper,” Advanced Mate- rials, Vol. 16, No. 14, 2004, pp. 1212-1215. doi:10.1002/adma.200306661
[7] G. Yasuo, F. Kensaku, K. Mikio, O. Yutaka, N. Masanobu and A. Kensuke, “Synthesis of Titanium Carbide from a Composite of TiO2, Nanoparticles/Methyl Cellulose by Carbothermal Reduction,” Material Research Bulletin, Vol. 36, No. 13-14, 2001, pp. 2263-2275. doi:10.1016/S0025-5408(01)00713-9
[8] P. Huber, D. Manova, S. Mandl and B. Rauschenbach, “Formation of TiN, TiC and TiCN by Metal Plasma Im- mersion Ion Implantation and Deposition,” Surface and Coatings Technology, Vol. 174-175, 2003, pp. 1243-1247. doi:10.1016/S0257-8972(03)00458-4
[9] S. C Tjong and Z. Y. Ma, “Microstructural and Mecha- nical Characteristics of in Situ Metal Matrix Composites,” Materials Science and Engineering: R: Reports, Vol. 29, No. 3-4, 2000, pp. 49-113. doi:10.1016/S0927-796X(00)00024-3
[10] N. Durlu, “Titanium Carbide Based Composites for High- temperature Applications,” Journal of the European Ce- ramic Society, Vol. 19, No. 13-14, 1999, pp. 2415-2419. doi:10.1016/S0955-2219(99)00101-6
[11] P. Ettmayer, H. Kolaska, W. Lengauer and K. Dreyer, “Ti(C,N)––Metallurgy and Properties,” International Jour- nal of Refractory Metals and Hard Materials, Vol. 13, No. 6, 1995, pp. 343-351. doi:10.1016/0263-4368(95)00027-G
[12] R. Koc and J. S. Folmer, “Carbothermal Synthesis of Titanium Carbide Using Ultrafine Titania Powders,” Jour- nal of Materials Science, Vol. 32, No. 12, 1997, pp. 3101- 3111. doi:10.1023/A:1018634214088
[13] N. A. Hassine, J. G. P. Binner and T. E. Cross, “Synthesis of Refractory Metal Carbide Powders via Microwave Carbothermal Reduction,” International Journal of Re- fractory Metals and Hard Materials, Vol. 13, No. 6, 1995, pp. 353-358. doi:10.1016/0263-4368(95)00035-H
[14] C. Navin, S. Meenakshi, S. D. Kumar and S. S. Amrit- phale, “Synthesis of Nano-TiC Powder Using Titanium Gel Precursor and Carbon Particles,” Materials Letters, Vol. 63, No. 12, 2009, pp. 1051-1053. doi:10.1016/j.matlet.2009.02.004
[15] S. R. Qi, X. T. Huang, Z. W. Gan, X. X. Ding and Y. Cheng, “Synthesis of Titanium Carbide Nanowires,” Journal of Crystal Growth, Vol. 219, No. 4, 2000, pp. 485- 488. doi:10.1016/S0022-0248(00)00634-5
[16] L. Tong and G. R. Ramana, “Synthesis of Titanium Carbide Nano-Powders by Thermal Plasma,” Scripta Mate- rialia, Vol. 52, No. 12, 2005, pp. 1253-1258. doi:10.1016/j.scriptamat.2005.02.033
[17] D. W. Lee and B. K. Kim, “Synthesis of Nano-Structured Titanium Carbide by Mg-Thermal Reduction,” Scripta Materialia, Vol. 48, No. 11, 2003, pp. 1513-1518. doi:10.1016/S1359-6462(03)00130-1
[18] D. W. Flaherty, N. T. Hahn, D. Ferrer, R. E. Todd, L. T. Paul and M. C. Buddie, “Growth and Characterization of High Surface Area Titanium Carbide,” The Journal of Physical Chemistry C, Vol. 113, No. 29, 2009, pp. 12742- 12752. doi:10.1021/jp904236v
[19] P. Patel, II-Seok Kim and P. N. Kumta, “Nanocomposites of Silicon/Titanium Carbide Synthesized Using High- Energy Mechanical Milling for Use as Anodes in Li- thium-Ion Batteries,” Materials Science and Engineering B, Vol. 116, No. 3, 2005, pp. 347-352. doi:10.1016/j.mseb.2004.05.046

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.