Soluble urokinase-plasminogen activator receptor (suPAR) and natural phosphorylcholine IgM antibodies in patients at clinical onset of diabetes mellitus
Magnus Hillman, Mona Landin-Olsson
DOI: 10.4236/jdm.2011.14013   PDF   HTML     4,285 Downloads   7,763 Views   Citations


We have studied the presence of novel inflammatory markers as soluble urokinase plasminogen activator receptor (suPAR) and natural IgM antibodies directed against phosphorylcholine (αPC-IgM) in Swedish diabetic patients (n = 164) and in healthy control subjects (n = 41). SuPAR is expressed by several types of immune cells and has been shown to be a marker of disease severity and predict mortality during infections. It has also been associated with low-grade inflammation. High levels of αPC-IgM have been shown to negatively associate with the risk of cardiovascular disease and vascular inflammation. This has been suggested to be more common among diabetic patients than in the background population. The patients were 15-34 years of age and were included in the diabetes incidence study in Sweden (DISS). They were all clinically diagnosed to have either T1D (n = 82) or T2D (n = 82). All subjects were matched in gender and age. Commercially available ELISA was used to detect suPAR and αPC-IgM. We found that suPAR levels were higher in diabetic patients (n = 164, Q2 = 4.5 mg/L) compared to in healthy control subjects (n = 41, Q2 = 2.7 mg/L; p < 0.0001), and in patients classified with T2D (n = 82; Q2 = 4.9) compared to in patients classified with T1D (n = 82; p=0.0002). The difference between T2D and T1D was even more obvious when LADA (n = 17) was extracted from the T2D group. SuPAR levels did also correlate with BMI (rs = 0.50; p < 0.0001), C-peptide levels (rs = 0.23; p < 0.0001) and CRP (rs = 0.58; p < 0.0001). Titers of αPC-IgM did not significantly differ between patients and controls. This is the first study to show the difference in suPAR levels between T1D and T2D patients. The high levels of suPAR in T2D patients indicate a strong activation of the immune system and its relation to disease progression needs to be further investigated. However, our data do not support a role for αPC-IgM in the development of diabetes.

Share and Cite:

Hillman, M. and Landin-Olsson, M. (2011) Soluble urokinase-plasminogen activator receptor (suPAR) and natural phosphorylcholine IgM antibodies in patients at clinical onset of diabetes mellitus. Journal of Diabetes Mellitus, 1, 96-103. doi: 10.4236/jdm.2011.14013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] McKenzie, M.D., Dudek, N.L., Mariana, L., Chong, M.M., Trapani, J.A., Kay, T.W. and Thomas, H.E. (2006) Perforin and Fas induced by IFNγ and TNFα mediate beta cell death by OT-I CTL. International Immunology, 18, 837-846. doi:10.1093/intimm/dxl020
[2] Campbell, P.D., Estella, E., Dudek, N.L., Jhala, G., Thomas, H.E., Kay, T.W. and Mannering, S.I. (2008) Cytotoxic T-lymphocyte-mediated killing of human pancreatic islet cells in vitro. Human Immunology, 69, 543-551. doi:10.1016/j.humimm.2008.06.008
[3] Schinner, S., Scherbaum, W.A., Bornstein, S.R. and Barthel, A. (2005) Molecular mechanisms of insulin resistance. Diabetic Medicine, 22, 674-682. doi:10.1111/j.1464-5491.2005.01566.x
[4] Zimmet, P.Z., Tuomi, T., Mackay, I.R., Rowley, M.J., Knowles, W., Cohen, M. and Lang, D.A. (1994) Latent autoimmune diabetes mellitus in adults (LADA): The role of antibodies to glutamic acid decarboxylase in diagnosis and prediction of insulin dependency. Diabetic Medicine, 11, 299-303. doi:10.1111/j.1464-5491.1994.tb00275.x
[5] Haffner, S.M., Lehto, S., Ronnemaa, T., Pyorala, K. and Laakso, M. (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine, 339, 229-234. doi:10.1056/NEJMoa052187
[6] Nathan, D.M., Cleary, P.A., Backlund, J.Y., Genuth, S.M., Lachin, J.M., Orchard, T.J., Raskin, P. and Zinman, B. (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. New England Journal of Medicine, 353, 2643-2653 doi:10.1056/NEJMoa052187
[7] Binder, C.J., Chang, M.K., Shaw, P.X., Miller, Y.I., Hartvigsen, K., Dewan, A. and Witztum, J.L. (2002) Innate and acquired immunity in atherogenesis. Nature Medicine, 8, 1218-1226 doi:10.1038/nm1102-1218
[8] Frostegard, J., Wu, R., Giscombe, R., Holm, G., Lefvert, A.K. and Nilsson, J. (1992) Induction of T-cell activation by oxidized low density lipoprotein. Arteriosclerosis, Thrombosis, and Vascular Biology, 12, 461-467. doi:10.1161/01.ATV.12.4.461
[9] Quinn, M.T., Parthasarathy, S. and Steinberg, D. (1998) Lysophosphatidylcholine: A chemotactic factor for human monocytes and its potential role in atherogenesis. Proceedings of the National Academy of Sciences of the USA, 85, 2805-2809. doi:10.1073/pnas.85.8.2805
[10] Huang, Y.H., Schafer-Elinder, L., Wu, R., Claesson, H.E. and Frostegard, J. (1999) Lysophosphatidylcholine (LPC) induces proinflammatory cytokines by a platelet-activating factor (PAF) receptor-dependent mechanism. Clinical and Experimental Immunology, 116, 326-331. doi:10.1046/j.1365-2249.1999.00871.x
[11] Heilbronn, L.K. and Campbell, L.V. (2008) Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Current Pharmaceutical Design, 14, 1225-1230. doi:10.2174/138161208784246153
[12] Duncan, B.B., Schmidt, M.I., Pankow, J.S., Ballantyne, C.M., Couper, D., Vigo, A., Hoogeveen, R., Folsom, A.R. and Heiss, G. (2003) Low-grade systemic inflammation and the development of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes, 52, 1799-1805. doi:10.2337/diabetes.52.7.1799
[13] Herder, C., Illig, T., Rathmann, W., Martin, S., Haastert, B., Muller-Scholze, S., Holle, R., Thorand, B., Koenig, W., Wichmann, H.E. and Kolb, H. (2005) Inflammation and type 2 diabetes: Results from KORA Augsburg. Gesundheitswesen, 67, 115-121. doi:10.1055/s-2005-858252
[14] Ploug, M., Ronne, E., Behrendt, N., Jensen, A.L., Blasi, F. and Dano, K. (1991) Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. The Journal of Biological Chemistry, 266, 1926-1933.
[15] Krishnan, R., Kremen, M., Hu, J.H., Emery, I. and Farris, S.D., Slezicki, K.I., Chu, T., Du, L., Dichek, H.L. and Dichek, D.A. (2009) Level of macrophage uPA expression is an important determinant of atherosclerotic lesion growth in Apoe-/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1737-1744. doi:10.1161/ATVBAHA.109.195529
[16] May, A.E., Schmidt, R., Kanse, S.M., Chavakis, T., Stephens, R.W., Schomig, A., Preissner, K.T. and Neumann, F.-J. (2002) Urokinase receptor surface expression regulates monocyte adhesion in acute myocardial infarction. Blood, 100, 3611-3617. doi:10.1182/blood-2002-03-0778
[17] Park, Y.-J., Liu, G., Tsuruta, Y., Lorne, E. and Abraham, E. (2009) Participation of the urokinase receptor in neutrophil efferocytosis. Blood, 114, 860-870. doi:10.1182/blood-2008-12-193524
[18] Ferland, C., Guilbert, M., Davoine, F., Flamand, N., Chakir, J. and Laviolette, M. (20001) Eotaxin promotes eosinophil transmigration via the activation of the plasminogen-plasmin system. Journal of Leukocyte Biology, 69, 772-778.
[19] Mondino, A. and Blasi, F. (2004) uPA and uPAR in fibrinolysis, immunity and pathology. Trends in Immunology, 25, 450-455. doi:10.1016/
[20] Schaefer, B.M., Stark, H.J., Fusenig, N.E., Todd, R.F. and Kramer, M.D. (1995) Differential expression of urokinase-type plasminogen activator (uPA), its receptor (uPA-R), and inhibitor type-2 (PAI-2) during differentiation of keratinocytes in an organotypic coculture system. Experimental Cell Research, 220, 415-423. doi:10.1006/excr.1995.1333
[21] Bernstein, A.M., Twining, S.S., Warejcka, D.J., Tall, E. and Masur, S.K. (2007) Urokinase receptor cleavage: A crucial step in fibroblast-to-myofibroblast differentiation. Molecular Biology of the Cell, 18, 2716-2727. doi:10.1091/mbc.E06-10-0912
[22] Mandriota, S.J., Seghezzi, G., Vassalli, J.-D., Ferrara, N., Wasi, S., Mazzieri, R., Mignatti, P. and Pepper, M.S. (1995) Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. The Journal of Biological Chemistry, 270, 9709-9716. doi:10.1074/jbc.270.17.9709
[23] Ostrowski, S.R., Ullum, H., Goka, B.Q., Hoyer-Hansen, G., Obeng-Adjei, G., Pedersen, B.K., Akanmori, B.D. and Kurtzhals, J.A. (2005) Plasma concentrations of soluble urokinase-type plasminogen activator receptor are increased in patients with malaria and are associated with a poor clinical or a fatal outcome. The Journal of Infectious Diseases, 191, 1331-1341. doi:10.1086/428854
[24] Eugen-Olsen, J., Gustafson, P., Sidenius, N., Fischer, T.K., Parner, J., Aaby, P., Gomes, V.F. and Lisse, I. (2002) The serum level of soluble urokinase receptor is elevated in tuberculosis patients and predicts mortality during treatment: A community study from Guinea-Bissau. The International Journal of Tuberculosis and Lung Disease, 6, 686-692.
[25] Perch, M., Kofoed, P., Fischer, T.K., Co, F., Rombo, L., Aaby, P. and Eugen-Olsen, J. (2004) Serum levels of soluble urokinase plasminogen activator receptor is associated with parasitemia in children with acute Plasmodium falciparum malaria infection. Parasite Immunology, 26, 207-211. doi:10.1111/j.0141-9838.2004.00695.x
[26] Wittenhagen, P., Kronborg, G., Weis, N., Nielsen, H., Obel, N., Pedersen, S.S. and Eugen-Olsen, J. (2004) The plasma level of soluble urokinase receptor is elevated in patients with Streptococcus pneumoniae bacteraemia and predicts mortality. Clinical Microbiology and Infection, 10, 409-415. doi:10.1111/j.1469-0691.2004.00850.x
[27] Slot, O., Brunner, N., Locht, H., Oxholm, P. and Stephens, R.W. (1999) Soluble urokinase plasminogen activator receptor in plasma of patients with inflammatory rheumatic disorders: Increased concentrations in rheumatoid arthritis. Annals of the Rheumatic Diseases, 58, 488-492. doi:10.1136/ard.58.8.488
[28] Sehestedt, T., Lyngbaek, S., Eugen-Olsen, J., Jeppesen, J., Andersen, O., Hansen, T.W., Linneberg, A., Jorgensen, T., Haugaard, S.B. and Olsen, M.H. (2011) Soluble urokinase plasminogen activator receptor is associated with subclinical organ damage and cardiovascular events. Atherosclerosis, 216, 237-243. doi:10.1016/j.atherosclerosis.2011.01.049
[29] Wei, Y., Lukashev, M., Simon, D.I., Bodary, S.C., Rosenberg, S., Doyle, M.V. and Chapman, H.A. (1996) Regulation of integrin function by the urokinase receptor. Science, 273, 1551-1555. doi:10.1126/science.273.5281.1551
[30] Wei, Y., Czekay, R.-P., Robillard, L., Kugler, M.C., Zhang, F., Kim, K.K., Xiong, J.-P., Humphries, M.J. and Chapman, H.A. (2005) Regulation of α5β1 integrin conformation and function by urokinase receptor binding. The Journal of cell Biology, 168, 501-511. doi:10.1083/jcb.200404112
[31] Pliyev, B.K. (2009) Activated human neutrophils rapidly release the chemotactically active D2D3 form of the urokinase-type plasminogen activator receptor (uPAR/CD87). Molecular and Cellular Biochemistry, 321, 111-122. doi:10.1007/s11010-008-9925-z
[32] Hoyer-Hansen, G., Ploug, M., Behrendt, N., Ronne, E. and Dano, K. (1997) Cell-surface acceleration of urokinase-catalyzed receptor cleavage. European Journal of Biochemistry, 243, 21-26. doi:10.1111/j.1432-1033.1997.0021a.x
[33] H?yer-Hansen, G., R?nne, E., Solberg, H., Behrendt, N., Ploug, M., Lund, L.R., Ellis, V. and Dano, K. (1992) Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. The Journal of Biological Chemistry, 267, 18224-18229.
[34] Eugen-Olsen, J., Andersen, O., Linneberg, A., Ladelund, S., Hansen, T.W., Langkilde, A., Petersen, J., Pielak, T., Moller, L.N., Jeppesen, J., Lyngbaek, S., Fenger, M., Olsen, M.H., Hildebrandt, P.R., Borch-Johnsen, K., Jorgensen, T. and Haugaard, S.B. (2010) Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. Journal of Internal Medicine, 268, 296-308. doi:10.1111/j.1365-2796.2010.02252.x
[35] De Faire, U. and Frostegard, J. (2009) Natural antibodies against phosphorylcholine in cardiovascular disease. Annals of the New York Academy of Sciences, 1173, 292-300. doi:10.1111/j.1749-6632.2009.04748.x
[36] Avrameas S. (1991) Natural autoantibodies: From “horror autotoxicus” to “gnothi seauton”. Immunology Today, 12, 154-159. doi:10.1016/S0167-5699(05)80045-3
[37] Harnett, W. and Harnett, M.M. (1999) Phosphorylcholine: Friend or foe of the immune system? Immunology Today, 20, 125-129. doi:10.1016/S0167-5699(98)01419-4
[38] American Diabetes Association (1992) Clinical practice recommendations. 1991-1992. Diabetes Care, 15, 1-80.
[39] Landin-Olsson, M. (1990) Precision of the islet-cell antibody assay depends on the pancreas. Journal of Clinical Laboratory Analysis, 4, 289-294. doi:10.1002/jcla.1860040410
[40] Falorni, A., Ortqvist, E., Persson, B. and Lernmark, A. (1995) Radioimmunoassays for glutamic acid decarboxylase (GAD65) and GAD65 autoantibodies using 35S or 3H recombinant human ligands. Journal of Immunological Methods, 186, 89-99. doi:10.1016/0022-1759(95)00139-2
[41] Gianani, R., Rabin, D.U., Verge, C.F., Yu, L., Babu, S.R., Pietropaolo, M. and Eisenbarth, G.S. (1995) ICA512 autoantibody radioassay. Diabetes, 44, 1340-1344. doi:10.2337/diabetes.44.11.1340
[42] Chakravarti, I.M., Laha, R.G. and Roy, J. (1967) Handbook of methods of applied statistics. John Wiley & Sons, Ltd., New York.
[43] Mann, H.B. and Whitney, D.R. (1947) On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 50-60 doi:10.1214/aoms/1177730491
[44] Kruskal, W.H. and Wallis, W.A. (1952) Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 47, 583-621. doi:10.2307/2280779
[45] Spearman, C. (2010) The proof and measurement of association between two things. International Journal of Epicemiology, 39, 1137-1150. doi:10.1093/ije/dyq191
[46] Koch, A., Voigt, S., Kruschinski, C., Sanson, E., Duckers, H., Horn, A., Yagmur, E., Zimmermann, H., Trautwein, C. and Tacke, F. (2011) Circulating soluble urokinase plasminogen activator receptor is stably elevated during the first week of treatment in the intensive care unit and predicts mortality in critically ill patients. Critical Care, 15, R63. doi:10.1186/cc10037
[47] Eugen-Olsen, J. (2011) suPAR—A future risk marker. Journal of Internal Medicine, 270, 29-31. doi:10.1111/j.1365-2796.2011.02372.x
[48] Andersen, O., Eugen-Olsen, J., Kofoed, K., Iversen, J. and Haugaard, S.B. (2008) suPAR associates to glucose metabolic aberration during glucose stimulation in HIV-infected patients on HAART. Journal of Infection, 57, 55-63. doi:10.1016/j.jinf.2008.01.014

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.