[38] [39] . In some cases, the females may even stop the oviposition in the absence of the male [40] .

In the present study, the maximum daily oviposition of P. macropilis was 1.76 eggs. This value may be considered low because the females were confined in arenas during eight days in the absence of the male, which was a necessary procedure to conduct the experiment to quantify only the adult female predatory activity alone.

The increase of the predatory mite oviposition in response to the increase in the prey density can contribute in the efficacy of biological control, allowing an increase in the predatory mites’ population. This is a favorable condition for P. macropilis because this mite, in general, is considered more efficient at high populations of the pest mites [41] .

5. Conclusion

The obtained results allow concluding that all post-larval developmental stages of P. macropilis are efficient to kill all phases of T. urticae developmental cycle and with a type II functional response.

Acknowledgements

To the Conselho Nacional de Desenvolvimento Científico e Tecnológico―National Council for Scientific and Technological Development―CNPq for the financial support and the fellowships granted.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Grbic, M., Van Leeuwen, T., Clark, R.M., Rombauts, S., Rouzé, P., Grbic, V., Osborne, E.J., Dermauw, W., Ngoc, P.C., Ortego, F., Hernández-Crespo, P., Diaz, I., Martinez, M., Navajas, M., Sucena, é., Magalhães, S., Nagy, L., Pace, R.M., Djuranovic, S., Smagghe, G., Iga, M., Christiaens, O., Veenstra, J.A., Ewer, J., Villalobos, R.M., Hutter, J.L., Hudson, S.D., Velez, M., Yi, S.V., Zeng, J., Pires-Dasilva, A., Roch, F., Cazaux, M., Navarro, M., Zhurov, V., Acevedo, G., Bjelica, A., Fawcett, J.A., Bonnet, E., Martens, C., Baele, G., Wissler, L., Sanchez-Rodriguez, A., Tirry, L., Blais, C., Demeestere, K., Henz, S.R., Gregory, T.R., Mathieu, J., Verdon, L., Farinelli, L., Schmutz, J., Lindquist, E., Feyereisen, R. and Van de Peer, Y. (2011) The Genome of Tetranychus urticae Reveals Herbivorous Pest Adaptations. Nature, 479, 487-492.
https://doi.org/10.1038/nature10640
[2] McMurtry, J.A. and Croft, B.A. (1997) Life Styles of Phytoseiid Mites and Their Roles as Biological Control Agents. Annual Review of Entomology, 42, 91-321.
https://doi.org/10.1146/annurev.ento.42.1.291
[3] Reis, P.R., Silva, E.A. and Zacarias, M.S. (2005) Controle biológico de ácaros em cultivos protegidos. Informe Agropecuário, 26, 58-67. http://www.epamig.br/download/ia_225_pragas-em-cultivos-protegidos-e-o-controle-biologico_2005/
[4] Ferla, N.J., Marchetti, M.M. and Gonçalves, D. (2007) ácaros predadores (Acari) associados à cultura do morango (Fragaria sp., Rosaceae) e plantas próximas no Estado do Rio Grande do Sul. Biota Neotropica, 7, 103-110.
http://www.biotaneotropica.org.br/v7n2/pt/abstract?article+bn01807022007
https://doi.org/10.1146/annurev.ento.42.1.291
[5] Watanabe, M.A., Moraes, G.J., Gastaldo, Jr. and Nicolella, G. (1994) Controle biológico do ácaro rajado com ácaros predadores fitoseídeos (Acari: Tetranychidae: Phytoseiidae) em culturas de pepino e morango. Scientia Agricola, 51, 75-81.
https://doi.org/10.1590/S0103-90161994000100012
[6] Fadini, M.A.M., Amaral, L.S., Oliveira, C.M., Venzon, M. and Oliveira, H. (2008) Controle biológico do ácaro-rajado Tetranychus urticae (Acari: Tetranychidae) no morangueiro com ácaros predadores. EPAMIG, Belo Horizonte, 3 p.
http://www.epamig.br/download/circular-tecnica-44/
[7] Moraes, G.J., McMurtry, J.A., Denmark, H.A. and Campos, C.B. (2004) A Revised Catalog of the Mite Family Phytoseiidae. Zootaxa, 434, 1-494.
https://doi.org/10.11646/zootaxa.434.1.1
[8] Silva, F.R., Vasconcelos, G.J.N., Gondim Jr., M.G.C. and Oliveira, J.V. (2005) Exigências térmicas e tabela de vida de fertilidade de Phytoseiulus macropilis (Banks) (Acari: Phytoseiidae). Neotropical Entomology, 34, 291-296.
https://doi.org/10.1590/S1519-566X2005000200017
[9] Oliveira, H., Janssen, A., Pallini, A., Venzon, M., Fadini, M. and Duarte, V. (2007) A Phytoseiid Predator from the Tropics as Potential Biological Control Agent for the Spider Mite Tetranychus urticae Koch (Acari: Tetranychidae). Biological Control, 42, 105-109.
https://doi.org/10.1016/j.biocontrol.2007.04.011
[10] Oliveira, H., Fadini, M.A.M., Venzon, M., Rezende, D., Rezende, F. and Pallini, A. (2009) Evaluation of the Predatory Mite Phytoseiulus macropilis Banks (Acari: Phytoseiidae) as a Biological Control Agent of the Two Spotted Spider Mite on Strawberry Plants under Greenhouse Conditions. Experimental and Applied Acarology, 47, 275-283.
https://doi.org/10.1007/s10493-008-9217-z
[11] Reis, P.R., Alves, E.B. and Sousa, E.O. (1997) Biologia do ácaro-vermelho do cafeeiro Oligonychus ilicis (McGregor, 1917). Ciência e Agrotecnologia, 21, 260-266.
[12] Souza-Pimentel, G.C., Reis, P.R., Silveira, E.C., Marafeli, P.P., Silva, E.A. and Andrade, H.B. (2014) Biological Control of Tetranychus urticae (Tetranychidae) on Rosebushes Using Neoseiulus californicus (Phytoseiidae) and Agrochemical Selectivity. Revista Colombiana de Entomologia, 40, 80-84. http://www.scielo.org.co/pdf/rcen/v40n1/v40n1a14.pdf
[13] McMurtry, J.A. and Scriven, G.T. (1964b) Studies on the Feeding, Reproduction, and Development of Amblyseius hibisci (Acarina: Phytoseiidae) on Various Food Substances. Annals of the Entomological Society of America, 57, 649-655.
https://doi.org/10.1093/aesa/57.5.649
[14] Prasad, V. (1967) Biology of the Predatory Mite Phytoseiulus macropilis in Hawaii (Acarina: Phytoseiidae). Annals of the Entomological Society of America, 60, 905-908.
https://doi.org/10.1093/aesa/60.5.905
[15] Shih, C.I., Poe, S.L. and Cromroy, H.L. (1979) Biology and Predation of Phytoseiulus macropilis on Tetranychus urticae. The Florida Entomologist, 62, 48-53.
http://www.jstor.org/stable/3494042
https://doi.org/10.2307/3494042
[16] Ali, F. (1998) Life Tables of Phytoseiulus macropilis (Banks) (Gamasida: Phytoseiidae) at Different Temperatures. Experimental and Applied Acarology, 22, 335-342.
https://doi.org/10.1023/A:1024560924642
[17] Sigmaplot (2004) Sigmaplot for Windows: Version 9.01. Systat Software, Inc., London.
[18] Reis, P.R., Sousa, E.O., Teodoro, A.V. and Pedro Neto, M. (2003) Effect of Prey Density on the Functional and Numerical Responses of Two Species of Predaceous Mites (Acari: Phytoseiidae). Neotropical Entomology, 32, 461-467.
https://doi.org/10.1590/S1519-566X2003000300013
[19] Reis, P.R., Teodoro, A.V. and Pedro Neto, M. (2000) Predatory Activity of Phytoseiid Mites on Developmental Stages of Coffee Ringspot Mite (Acari: Phytoseiidae: Tenuipalpidae). Neotropical Entomology, 29, 547-553.
https://doi.org/10.1590/S0301-80592000000300017
[20] Forero, G., Rodríguez, M., Cantor, F., Rodríguez, D. and Cure, J.R. (2008) Critérios para el manejo de Tetranychus urticae Koch (Acari: Tetranychidae) com el ácaro depredador Amblyseius (Neoseiulus) sp. (Acari: Phytoseiidae) en cultivos de rosas. Agronomia Colombiana, 26, 78-86. http://www.scielo.org.co/pdf/agc/v26n1/v26n1a10.pdf
[21] Marafeli, P.P., Reis, P.R., Silveira, E.C., Toledo, M.A. and Souza-Pimentel, G.C. (2011) Neoseiulus californicus (McGregor, 1954) Preying in Different Life Stages of Tetranychus urticae Koch, 1836 (Acari: Phytoseiidae, Tetranychidae). Acarologia, 51, 499-506.
https://doi.org/10.1051/acarologia/20112031
[22] Holling, C.S. (1959) Some Characteristics of Simple Types of Predation and Parasitism. The Canadian Entomologist, 91, 385-398.
https://doi.org/10.4039/Ent91385-7
[23] Juliano, S.A. (2001) Nonlinear Curve Fitting: Predation and Functional Response Curves. In: Cheiner, S.M. and Gurven, J., Eds., Design and Analysis of Ecological Experiments, 2nd Edition, Chapman and Hall, London, 178-196.
[24] R Development Core Team (2014) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. http://www.r-project.org
[25] Cedola, C.V., Sanchez, N.L. and Lijesthrom, G. (2001) Effect of Tomato Leaf Hairiness on Functional and Numerical Response of Neoseiulus californicus (Acari: Phytoseiidae). Experimental and Applied Acarology, 25, 819-831.
https://doi.org/10.1023/A:1020499624661
[26] Shipp, J.L. and Whitfield, G.H. (1991) Functional Response of the Predatory Mite Amblyseius cucumeris (Acari: Phytoseiidae) on Western Flower Thrips Frankliniella occidentalis (Thysanoptera: Thripidae). Environmental Entomology, 20, 694-699.
https://doi.org/10.1093/ee/20.2.694
[27] Milonas, P.G., Kontodimas, D.C.H. and Martinou, A.F. (2011) A Predator’s Functional Response: Influence of Prey Species and Size. Biological Control, 59, 141-146.
https://doi.org/10.1016/j.biocontrol.2011.06.016
[28] Castagnoli, M. and Simoni, S. (1999) Effect of Long-Term Feeding History on Functional and Numerical Response of Neoseiulus californicus (Acari: Phytoseiidae). Experimental and Applied Acarology, 23, 217-234.
https://doi.org/10.1023/A:1006066930638
[29] Gotoh, T., Nozawa, M. and Yamaguchi, K. (2004) Prey Consumption and Functional Response of Three Acarophagous Species to Eggs of the Two-Spotted Spider Mite in the Laboratory. Applied Entomology and Zoology, 39, 97-105.
https://doi.org/10.1303/aez.2004.97
[30] Poletti, M., Maia, A.H.N. and Omoto, C. (2007) Toxicity of Neonicotinoid Insecticides to Neoseiulus californicus and Phytoseiulus macropilis (Acari: Phytoseiidae) and Their Impact on Functional Response to Tetranychus urticae (Acari: Tetranychidae). Biological Control, 40, 30-36.
https://doi.org/10.1016/j.biocontrol.2006.09.001
[31] Rahman, V.J., Babu, A., Roobakkumar, A. and Perumalsamy, K. (2012) Functional and Numerical Responses of the Predatory Mite, Neoseiulus longispinosus, to the Red Spider Mite, Oligonychus coffeae, Infesting Tea. Journal of Insect Science, 12, 1-12.
https://doi.org/10.1673/031.012.12501
[32] Carrillo, D. and Peña, J.E. (2012) Prey-Stage Preferences and Functional and Numerical Responses of Amblyseius largoensis (Acari: Phytoseiidae) to Raoiella indica (Acari: Tenuipalpidae). Experimental and Applied Acarology, 57, 361-372.
https://doi.org/10.1007/s10493-011-9488-7
[33] Silveira, E.C. (2013) História de vida de Euseius concordis (Chant, 1959) tendo como presa Oligonychus ilicis (McGregor, 1917) (Acari: Phytoseiidae, Tetranychidae). Dissertação, Universidade Federal de Lavras, Brasil, 69 p. http://repositorio.ufla.br/jspui/handle/1/657
[34] Toledo, M.A., Reis, P.R., Silveira, E.C., Marafeli, P.P. and Souza-Pimentel, G.C. (2013) Predatory Potential of Euseius alatus (Phytoseiidae) on Different Life Stages of Oligonychus ilicis (Tetranychidae) on Coffee Leaves under Laboratory Conditions. Neotropical Entomology, 42, 185-190.
https://doi.org/10.1007/s13744-012-0100-6
[35] Mori, H. and Chant, D.A. (1966) The Influence of Prey Density, Relative Humidity and Starvation on the Predacious Behavior of Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae). Canadian Journal of Zoology, 44, 483-491.
https://doi.org/10.1139/z66-047
[36] Sandness, J.N. and McMurtry, J.A. (1970) Functional Response of Three Species of Phytoseiidae (Acarina) to Prey Density. The Canadian Entomologist, 102, 692-704.
https://doi.org/10.4039/Ent102692-6
[37] Sabelis, M.W. and Janssen, A. (1994) Evolution of Life-History Patterns in the Phytoseiidae. In: Houck, M.A., Ed., Mites: Ecological and Evolutionary Analyses of Life-History Patterns, Chapman and Hall, New York, 70-99.
https://doi.org/10.1007/978-1-4615-2389-5_4
[38] Huffaker, C.B. (1958) Experimental Studies on Predation: Dispersion Factors and Predator-Prey Oscillations. Hilgardia, 27, 343-383.
https://doi.org/10.3733/hilg.v27n14p343
[39] Chant, D.A. (1959) Phytoseiid Mites (Acarina: Phytoseiidae). Part I. Bionomics of Seven Species in Southeastern England. Part II. A Taxonomic Review of the Family Phytoseiidae, with Descriptions of Thirty-Eight New Species. The Canadian Entomologist, 91, 45-166.
https://doi.org/10.4039/entm9112fv
[40] McMurtry, J.A. and Scriven, G.T. (1964a) Biology of the Predacious Mite Typhlodromus rickeri (Acarina: Phytoseiidae). Annals of the Entomological Society of America, 57, 362-367.
https://doi.org/10.1093/aesa/57.3.362
[41] Bernardi, D., Botton, M., Cunha, U.S., Nava, D.E. and Garcia, M.S. (2010) Bioecologia, monitoramento e controle do ácaro-rajado com o emprego da azadiractina e ácaros predadores na cultura do morangueiro. Embrapa, Bento Gonçalves, 8 p.
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/31206/1/cir083.pdf

  
comments powered by Disqus
AE Subscription
E-Mail Alert
AE Most popular papers
Publication Ethics & OA Statement
AE News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.