The antioxidant status of the plasma in patients with breast cancer undergoing chemotherapy

.
DOI: 10.4236/ojmip.2011.13005   PDF   HTML     6,082 Downloads   14,816 Views   Citations

Abstract

The aim of the present study was to investigate the status of oxidative stress in the serum of patients affected with cancer breast. Changes in the levels of total antioxidant capacity (TAC), uric acid, malondialdehyde (MDA), nitric oxide (nitrite/nitrate), cupper and iron were measured in serum of patients affected by non-metastatic as well as metastatic cancer breast. Significant decrease in TAC (32.7-37.5%), uric acid (28.1%-49.2), MDA (20.7%-25.2%) and nitric oxide (50.4%-61.9) were found in both groups of cancer breast patients compared to the control group. Serum Cu++ concentrations were significantly lower in metastatic cancer patient group compared with both control and non-metastatic cancer groups. Fe++ in serum was significantly lower in patients with non-metastatic cancer compared to normal subjects and patients with metastatic cancer. Significant differences were also observed between patients with non-metastatic and metastatic cancer breast as regards serum uric acid, nitric oxide were higher were observed in non-metastatic compared with metastatic cancer breast.

Share and Cite:

Abdel-Salam, O. , Youness, E. and Hafez, H. (2011) The antioxidant status of the plasma in patients with breast cancer undergoing chemotherapy. Open Journal of Molecular and Integrative Physiology, 1, 29-35. doi: 10.4236/ojmip.2011.13005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Coughlin, S.S., and Ekwueme, D.U. (2009) Breast cancer as a global health concern. Cancer Epidemiology, 33, 315-318. doi:10.1016/j.canep.2009.10.003
[2] Noda, N. and Wakasugi, H. (2001) Cancer and oxidative stress. Japan Medical Association Journal, 44, 535-539.
[3] Halliwell, B. (2007) Oxidative stress and cancer: Have we moved forward? Biochemical Journal, 401, 1-11. doi:10.1042/BJ20061131
[4] Halliwell, B. and Gutteridge, J.M.C. (2006) Free radicals in biology and medicine, Edition 4th, Clarendon Press, Oxford.
[5] Halliwell, B. and Gutteridge, J.C. (1995) The definition and measurement of antioxidants in biological systems. Free Radical Biology and Medicine, 18, 125-126. doi:10.1016/0891-5849(95)91457-3
[6] Kasapovi?, J., Peji?, S., Stojiljkovi?, V., Todorovi?, A., Rado?evi?-Jeli?, L., Sai?i?, Z.S. and Pajovi?, S.B. (2010) Antioxidant status and lipid peroxidation in the blood of breast cancer patients of different ages after chemotherapy with 5-fluorouracil, doxorubicin and cyclophosphamide. Clinical Biochemistry, 43, 1287-1293. doi:10.1016/j.clinbiochem.2010.08.009
[7] Yeon, J.Y., Suh, Y.J., Kim, S.W., Baik, H.W., Sung, C.J., Kim, H.S. and Sung, M.K. (2011) Evaluation of dietary factors in relation to the biomarkers of oxidative stress and inflammation in breast cancer risk. Nutrition, 27, 912-918. doi:10.1016/j.nut.2010.10.012
[8] Aruoma, O.I. (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American Oil Chemists’ Society, 75, 199-212.
[9] Conklin, K.A. (2004) Chemotherapy-Associated oxidative stress: Impact on chemotherapeutic effectiveness. Integrative Cancer Therapies, 3, 294. doi:10.1177/1534735404270335
[10] Ladas, E.J., Jacobson, J.S., Kennedy, D.D., Teel, K., Fleischauer, A. and Kelly, K.M. (2004) Antioxidants and cancer therapy: A systematic review. Journal of Clinical Oncology, 22, 517-528. doi:10.1200/JCO.2004.03.086
[11] Crohns, M., Liippo, K., Erhola, M., Kankaanranta, H., Moilanen, E., Alho, H. and Kellokumpu-Lehtinen, P. (2009) Concurrent decline of several antioxidants and markers of oxidative stress during combination chemotherapy for small cell lung cancer. Clinical Biochemistry, 42, 1236-1245. doi:10.1016/j.clinbiochem.2009.05.003
[12] Turchi, J.J. (2006) Nitric oxide and cisplatin resistance: No easy answers. Proceedings of the National Academy of Sciences, 103, 4337-4338. doi:10.1073/pnas.0601001103
[13] Valko, M., Rhodes, C.J., Moncola, J., Izakovic, M. and Mazura, M. (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1-40. doi:10.1016/j.cbi.2005.12.009
[14] Ruiz-Larrea, M.B., Leal, A.M., Liza, M., Lacort, M. and De Groot, H. (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids, 59, 383-388. doi:10.1016/0039-128X(94)90006-X
[15] Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S. and Cosic, V. (2001) Method for the measurement of antioxidant activity in human fluids. Journal of Clinical Pathology, 54, 356-361. doi:10.1136/jcp.54.5.356
[16] Miranda, K.M., Espey, M.G. and Wink, D.A. (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 5, 62-71 doi:10.1006/niox.2000.0319
[17] Fossati, P., Prencipe, L. and Berti, G. (1980) Use of 3,5- dichloro-2-hydroxybenzenesulfonic acid/4-aminophena-zone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clinical Chemistry, 26, 227-231.
[18] Dürken, M., Agbenu, J., Finckh, B., Hübner, C., Pichlmeier, U., Zeller, W., Winkler, K., Zander, A. and Kohlschütter, A. (1995) Deteriorating free radical trapping capacity and antioxidant status in plasma during bone marrow transplantion. Bone Marrow Transplant, 15, 757-762.
[19] Sener, D.E., G?nen?, A., Akinci, M. and Torun, M. (2007) Lipid peroxidation and total antioxidant status in patients with breast cancer. Cell Biochemistry and Function, 25, 377-382. doi:10.1002/cbf.1308
[20] Do Val Carneiro, J.L., Nixdorf, S.L., Mantovani, M.S., Da Silva Do Amaral Herrera, A.C., Aoki, M.N., Amarante, M.K., Fabris, B.A., Pelegrinelli Fungaro, M.H. and Ehara Watanabe, M.A. (2009) Plasma malondialdehyde levels and CXCR4 expression in peripheral blood cells of breast cancer patients. Journal of Cancer Research and Clinical Oncology, 135, 997-1004. doi:10.1007/s00432-008-0535-7
[21] Lauterburg, B.H., Nguyen, T., Hartmann, B., Junker, E., Kupfer, A. and Cerny, T. (1994) Depletion of total cysteine, glutathione, and homocysteine in plasma by ifosfamide/mesna therapy. Cancer Chemotherapy and Pharmacology, 35, 132-136. doi:10.1007/BF00686635
[22] Jonas, C.R., Puckett, A.B., Jones, D.P., Griffith, D.P., Szeszycki, E.E., Bergman, G.F., Furr, C.E., Tyre, C., Carlson, J.L., Galloway, J.R., Blumberg, J.B. and Ziegler, T.R. (2000) Plasma antioxidant status after high-dose chemotherapy a randomized trial of parenteral nutrition in bone marrow transplantation patients. The American Journal of Clinical Nutrition, 72, 181-189.
[23] Erhola, M., Kellokumpu-Lehtinen, P., Metsa-Ketela, T., Alanko, K. and Nieminen, M.M. (1996) Effects of anthracyclin-based chemotherapy on total plasma antioxidant capacity in small cell lung cancer patients. Free Radical Biology and Medicine, 21, 383-390. doi:10.1016/0891-5849(96)00041-X
[24] Rabovsky, A.B., Komarov, A.M., Ivie, J.S. and Buettner, G.R. (2010) Minimization of free radical damage by metal catalysis of multivitamin/multimineral supplements. Nutrition Journal, 9, 61. doi:10.1186/1475-2891-9-61
[25] Moncada, S., Palmer, R. M. J. and Higgs, E. A. (1991) Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacological Reviews, 43, 109-142.
[26] Moncada, S. and Bolanos, J.P. (2006) Nitric oxide, cell bioenergetics and neurodegeneration. Journal of Neurochemistry, 97, 1676-1689. doi:10.1111/j.1471-4159.2006.03988.x
[27] Yagihashi, N., Kasajima, H., Sugai, S., Matsumoto, K., Ebina, Y., Morita, T., Murakami, T. and Yagihashi, S. (2000) Increased in situ expression of nitric oxide synthase in human colorectal cancer. Virchows Arch, 436, 109-114. doi:10.1007/PL00008208
[28] Jadeski, L.C., Chakraborty, C. and Lala, P.K. (2003) Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. International Journal of Cancer, 106, 496-504. doi:10.1002/ijc.11268
[29] Duda, D.G., Fukumura, D. and Jain, R.K. (2004) Role of eNOS in neovascularization: No for endothelial progenitor cells. Trends in Molecular Medicine, 10, 43-145. doi:10.1016/j.molmed.2004.02.001
[30] Leung, E.L., Fraser, M., Fiscus, R.R. and Tsang, B.K. (2008) Cisplatin alters nitric oxide synthase levels in human ovarian cancer cells: Involvement in p53 regulation and cisplatin resistance. British Journal of Cancer, 98, 1803-1809. doi:10.1038/sj.bjc.6604375
[31] Fujita, S., Masago, K., Hatachi, Y., Fukuhara, A., Hata, A., Kaji1, R., Kim, Y.H., Mio, T., Mishima, M. and Katakami, N. (2010) Genetic polymorphisms in the endothelial nitric oxide synthase gene correlate with overall survival in advanced non-small-cell lung cancer patients treated with platinum-based doublet chemotherapy. BMC Medical Genetics, 11, 167. doi:10.1186/1471-2350-11-167
[32] Güler, E., Balat, A., ?ekmen, M., K?l?n?, M., Sivasli, E., Yürekli, M. and Duman, C. (2006) The effects of anticancer drugs on levels of nitric oxide and adrenomedullin. The Turkish Journal of Pediatrics, 48, 202-208.
[33] Serafini, M. and Del Rio, D. (2004) Understanding the association between dietary antioxidants, redox status and disease: Is the total antioxidant capacity the right tool? Redox Report, 9, 145-152. doi:10.1179/135100004225004814
[34] Kankofer, M., Lipko, J. and Zdunczyk, S. (2005) Total antioxidant capacity of bovine spontaneously released and retained placenta. Pathophysiology, 11, 215-219. doi:10.1016/j.pathophys.2005.01.001
[35] Di Giacomo, C., Acquaviva, R., Lanteri, R., Licata, F., Licata, A. and Vanella, A. (2003) Nonproteic antioxidant status in plasma of subjects with colon cancer. Experimental Biology and Medicine (Maywood), 228, 525-528.
[36] Papageorgiou, M., Stiakaki, E., Dimitriou, H., Malliaraki, N., Notas, G., Castanas, E. and Kalmanti, M. (2005) Cancer chemotherapy reduces plasma total antioxidant capacity in children with malignancies. Leukemia Research, 29, 11-16. doi:10.1016/j.leukres.2004.04.017
[37] Ames, B.N., Cathcart, R., Schwiers, E. and Hochstein, P. (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis (lipid peroxidation/ascorbic acid/pri- mate evolution/erythrocyte aging). Proceedings of the National Academy of Sciences, 78, 6858-6862. doi:10.1073/pnas.78.11.6858
[38] Cohen, A.M., Aberdrotha, R.E. and Hochstein, P. (1984) Inhibition of free radical-induced DNA damage by uric acid. FEBS Letters, 174, 147-150. doi:10.1016/0014-5793(84)81094-7
[39] Davies, K.J., Sevanian, A.S., Muakkassah-Kelly, S.F. and Hochstein, P. (1986) Uric acid-iron ion complexes: A new aspect of the antioxidant functions of uric acid. Biochemical Journal, 235, 747-754.
[40] Muraoka, S. and Miura, T. (2003) Inhibition by uric acid of free radicals that damage biological molecules. Toxicology and Pharmacology, 93, 284-289. doi:10.1111/j.1600-0773.2003.pto930606.x
[41] Stinefelt, B., Leonard, S.S., Blemings, K.P., Shi, X. and Klandorf, H. (2005) Free radical scavenging, DNA protection, and inhibition of lipid peroxidation mediated by uric acid. Annals of Clinical & Laboratory Science, 35, 37-45.
[42] Waring, W.S., Convery, A., Mishra, V., Shenkin, A., Webb, D.J. and Maxwell, S.R.J. (2003) Uric acid reduces exercise-induced oxidative stress in healthy adults. Clinical Science, 105, 425-430. doi:10.1042/CS20030149
[43] Gao, X., Chen, H., Choi, H.K., Curhan, G., Schw- arzschild, M.A. and Ascherio, A. (2008) Diet, urate, and parkinson’s disease risk in men. American Journal of Epidemiology, 167, 831-838. doi:10.1093/aje/kwm385
[44] Cipriani, S., Chen, X. and Schwarzschild, M.A. (2010) Urate: A novel biomarker of Parkinson’s disease risk, diagnosis and prognosis. Biomarks in Medicine, 4, 701- 712. doi:10.2217/bmm.10.94
[45] Halliwell, B., Gutteridge, J.M.C. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemistry, 219, 1-14.
[46] Fisher, A.E.O. and Naughton, D.P. (2003) Redox-active metal ions and oxidative stress: Therapeutic implications. Proceedings of the Indian National Science Academy, B69, 453-460.
[47] Martin, M.B., Reiter, R., Pham, T., Avellanet, Y.R., Camara, J., Lahm, M., Pentecost, E., Pratap, K., Gilmore, B.A., Divekar, S., Dagata, R.S., Bull, J.L. and Stoica, A. (2003) Estrogen-Like activity of metals in mcf-7 breast cancer cells. Endocrinology, 144, 2425. doi:10.1210/en.2002-221054
[48] Kuo, H.W., Chen, S.F., Wu, C.C., Chen, D.R. and Lee, J.H. (2002) Serum and tissue trace elements in patients with breast cancer. Biological Trace Element Research, 89, 1-11. doi:10.1385/BTER:89:1:1
[49] Brewer, G.J. (2001) Copper control as an antiangiogenic anticancer therapy: Lessons from treating Wilson’s disease. Experimental Biology and Medicine (Maywood), 226, 665-673.
[50] Goodman, V.L., Brewer, G.J. and Merajver, S.D. (2004) Copper deficiency as an anti-cancer strategy. Endocrine-Related Cancer, 11, 255-263. doi:10.1677/erc.0.0110255
[51] Elmberg, M., Hultcrantz, R., Ekbom, A., Brandt, L., Olsson, S. and Olsson, R. (2003) Cancer risk in patients with hereditary hemochromatosis and in their first-degree relatives. Gastroenterology, 125, 1733-1741. doi:10.1053/j.gastro.2003.09.035
[52] Wu, T., Sempos, C.T., Freudenheim, J.L., Muti, P. and Smit, E. (2004) Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Annals of Epidemiology, 14, 195-201. doi:10.1016/S1047-2797(03)00119-4
[53] Ulbrich, E.J., Lebrecht, A., Schneider, I., Ludwig, E., Koelbl, H. and Hefler, L.A. (2003) Serum parameters of iron metabolism in patients with breast cancer. Anticancer Research, 23(6D), 5107-5109.
[54] Geraki, K., Farquharson, M.J. and Bradley, D.A. (2002) Concentrations of Fe, Cu and Zn in breast tissue: A synchrotron XRF study. Physics in Medicine and Biology, 47, 2327-2339. doi:10.1088/0031-9155/47/13/310
[55] Farquharson, M.J., Al-Ebraheem, A., Falkenberg, G., Leek, R., Harris, A.L. and Bradley, D.A. (2008) The distribution of trace elements Ca, Fe, Cu and Zn and the determination of copper oxidation state in breast tumour tissue using muSRXRF and muXANES. Physics in Medicine and Biology, 53, 3023-3037. doi:10.1088/0031-9155/53/11/018
[56] Elliott, R.L., Head, J.F. and McCoy, J.L. (1994) Relationship of serum and tumor levels of iron and iron-binding proteins to lymphocyte immunity against tumor antigen in breast cancer patients. Breast Cancer Research and Treatment, 30, 305-309. doi:10.1007/BF00665972
[57] Weijl, N.I., Elsendoorn, T.J., Moison, R.M.W., Lentjes, E.G.W.M., Brand, R., Berger, H.M. and Osanto, S. (2004) Non-protein bound iron release during chemotherapy in cancer patients. Clinical Science, 106, 475-484. doi:10.1042/CS20030271
[58] Alag?l, H., Erdem, E., Sancak, B., Turkmen, G., Camlibel, M. and Bugdayci, G. (1999) Nitric oxide biosynthesis and malondialdehyde levels in advanced breast cancer. Australian and New Zealand Journal of Surgery, 69, 647-650. doi:10.1046/j.1440-1622.1999.01656.x
[59] G?nen?a, A., Ertena, D., Aslanb, S., Ak?nc?b, M., ?im?eka, B. and Toruna, M. (2006) Lipid peroxidation and antioxidant status in blood and tissue of malignant breast tumor and benign breast disease. Cell Biology International, 30, 376-380. doi:10.1016/j.cellbi.2006.02.005
[60] Gerber, M., Astre, C., Ségala, C., Saintot, M., Scali, J., Simony-Lafontaine, J., Grenier, J. and Pujol, H. (1996) Oxidant-antioxidant status alterations in cancer patients: Relationship to tumor progression. Journal of Nutrition, 126,1201S-1207S.
[61] Saintot, M., Mathieu-Daude, H., Astre, C., Grenier, J., Simony-Lafontaine, J. and Gerber, M. (2002) Oxidant- antioxidant status in relation to survival among breast cancer patients. International Journal of Cancer, 97, 574-579. doi:10.1002/ijc.10099

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.