Role of Polyamines in Ozone Exposed Ischemic-Reperfused Hearts
Rajat Sethi, Sai Raghuveer Chava, Sajid Bashir, Mauro E. Castro
.
DOI: 10.4236/ajac.2011.27095   PDF    HTML     4,837 Downloads   8,141 Views   Citations

Abstract

The effect of chronic ozone exposure to ischemia reperfusion (I/R) injury in isolated perfused rat hearts was previously demonstrated. The present study tested our hypothesis that chronic ozone exposure led to attenuation of polyamines in the heart, which may limit sensitivity to I/R. Sprague Dawley rats were continuously exposed for 8 hrs/day for 28 days to filtered air or 0.8 ppm ozone. Isolated hearts were previously subjected to 0.5 hour of global ischemia followed by 1 hour of reperfusion after which global polyamine content was examined between the two groups. Spermidine production was significantly increased in the experimental group compared to control group (of I/R hearts). These results suggest that ozone-induced sensitivity to chronic I/R injury activates myocardial polyamine stress response characterized by increased enzymatic activities and accumulation of spermidine. Collectively, these results suggest that I/R possibly disturbs polyamine metabolism, and increased oxidative stress and concomitant reduced myocardial cell viability.

Share and Cite:

R. Sethi, S. Chava, S. Bashir and M. Castro, "Role of Polyamines in Ozone Exposed Ischemic-Reperfused Hearts," American Journal of Analytical Chemistry, Vol. 2 No. 7, 2011, pp. 832-839. doi: 10.4236/ajac.2011.27095.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Thom, N. Haase, W. Rosamond, V. J. Howard, J. Ru- msfeld, T. Manolio, Z. J. Zheng, K. Flegal, C. O’Donnell, S. Kittner, D. Lloyd-Jones, D. C. Goff, Y. Hong, R. Adams, G. Friday, K. Furie, P. Gorelick, B. Kissela, J. Marler, J. Meigs, V. Roger, S. Sidney, P. Sorlie, J. Stein-berger, S. Wasserthiel-Smoller, M. Wilson and P. Wolf, “Heart Disease and Stroke Statistics-2006 Update: A Re- port from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circu-lation, Vol. 113,
[2] R. S. P. Perepu, C. Garcia, D. Dostal and R. Sethi, “En-hanced Death Signaling in Ozone Exposed Ischemic- Reperfused Hearts,” Molecular and Cellular Biochemistry, Vol. 336, No. 1-2, 2010, pp. 55-64. doi:10.1007/s11010-009-0265-4
[3] K. K. Sathish, M. Haque, T. E. Perumal, J. Francis and R. M. Uppu, “A Major Ozonation Product of Cholesterol, 3- Beta-Hydroxy-5-Oxo-5, 6-Seco-Cholestan-6-al, Induces Apoptosis in H9c2 Cardiomyoblasts,” FEBS Letters, Vol. 579, No. 28, 2005, pp. 6444-6450. doi:10.1016/j.febslet.2005.10.044
[4] R. D. Brooke, “Cardiovascular Effects of Air Pollution,” Clinical Science, Vol. 115, 2008, pp. 175-187. doi:10.1042/CS20070444
[5] J. B. Ruidavets, M. Cournot, S. Cassadou, M. Giroux, M. Meybeck and J. Ferrieres, “Ozone Air Pollution Is Asso-ciated with Acute Myocardial Infarction,” Circulation, Vol. 111, 2005, pp. 563-569. doi:10.1161/01.CIR.0000154546.32135.6E
[6] K. Niiranen, M. Pietil?, T. J. Pirttil?, A. J?rvinen, M. Halmekyt?, V. P. Korhonen, T. A. Kein?nen, L. Alhonen and J. J?nne, “Targeted Disruption of Spermidine/Sper- mine N1-Acetyltransferase Gene in Mouse Embryonic Stem Cells. Effects on Polyamine Homeostasis and Sen-sitivity to Polyamine Analogues,” Journal of Biological Chemistry, Vol. 277, 2002, pp. 25323-25328. doi:10.1074/jbc.M203599200
[7] R. Wang, C. Q. Xu, W. M. Zhao, J. Zhang, K. Cao, B. F. Yang and L. F. Wu, “Calcium and PolyaminE Regulated Calcium-Sensing Receptors in Cardiac Tissues,” European Journal of Biochemistry, Vol. 270, No. 12, 2003, pp. 2680-2688. doi:10.1046/j.1432-1033.2003.03645.x
[8] J. Satriano, S. Ishizuka, D. C. Archer, R. C. Blantz and C. J. Kelly, “Regulation of Intracellular Polyamine Biosyn-thesis and Transport by NO and Cytokines TNF-Alpha and IFN-Gamma,” American Journal of Physiology, Vol. 276 (4 Pt 1), 1999, pp. C892-C899.
[9] M. J. Wiester, J. S. Tepper, M. E. King, M. G. Menache and D. L. Costa, “Comparative Study of Ozone (O3) Up-take in Three Strains of Rats and in the Guinea Pig,” Toxicology and Applied Pharmacology, Vol. 96, No. 1, 1998, pp. 140-146. doi:10.1016/0041-008X(88)90256-6
[10] R. Sethi, N. S. Dhalla, “Inotropic Responses to Isoprote-renol in Congestive Heart Failure Subsequent to Myocar-dial Infarction in Rats,” Journal of Cardiac Failure, Vol. 1, No. 5, 1995, pp. 391-399. doi:10.1016/S1071-9164(05)80008-9
[11] R. Sethi, S. R. Chava, S. Bashir and M. E. Castro, “An Improved High Performance Liquid Chromatographic Method for Identification and Quantization of Polyamines as Benzoylated Derivatives,” American Journal of Analytical Chemistry, Vol. 2, 2011, pp. 456-469. doi:10.4236/ajac.2011.24055
[12] Y. Hayashi, J. Tanaka, Y. Morizumi, Y. Kitamura and Y. Hattori, “Polyamine Levels in Brain and Plasma after Acute Restraint or Water-Immersion Restraint Stress in Mice,” Neuroscience Letters, Vol. 355, No. 1-2, 2004, pp. 57-60. doi:10.1016/j.neulet.2003.10.027
[13] B. A. Coert, R. E. Andereson and F. B. Meyer, “Exogen-ous Spermine Reducesischemic Damage in a Model of Focal Cerebral Ischemia in the Rat,” Neuroscience Letters, Vol. 282, No. 1-2, 2000, pp. 5-8. doi:10.1016/S0304-3940(00)00856-9
[14] J. M. Dypbukt, M. Ankarcrona, M. Burkitt, A. Sjoholm, K. Strom, S. Orrenius and P. Nicotera, “Different Pro- oxidant Levels Stimulate Growth, Trigger Apoptosis, or Produce Necrosis of Insulin-Secreting RINm5F Cells,” Journal of Biological Chemistry, Vol. 269, 1994, pp. 30553-50560.
[15] K. C. Das and H. P. Misra, “Hydroxyl Radical Scaveng-ing and Singlet Oxygen Quenching Properties of Polya-mines,” Molecular and Cellular Biochemistry, Vol. 262, No. 1-2, 2004, pp. 127-133. doi:10.1023/B:MCBI.0000038227.91813.79
[16] J. M. Ribeiro and D. A. Carson, “Ca2+/Mg2+-Dependent Endonuclease from Human Spleen: Purification, Properties and Role in Apoptosis,” Biochemistry, Vol. 32, No. 35, 1993, pp. 9129-9136. doi:10.1021/bi00086a018
[17] G. Drolet, E. B. Dumbroff, R. L. Legge and J. E. Thom- pson, “Radical Scavenging Properties of Polyamines,” Phytochemistry, Vol. 25, No. 2, 1986, pp. 367-371. doi:10.1016/S0031-9422(00)85482-5
[18] R Alcázar, T. Altabella, F. Marco, C. Bortolotti, M. Reymond,?C. Koncz, P. Carrasco and A. F. Tiburcio, “Polyamines: Molecules with Regulatory Functions in Plant Abiotic Stress Tolerance,” Planta, Vol. 231, 2008, pp. 1237-1249.
[19] G. Noctor, A. M. Arisi, L. Jouanin, K. J. Kunert, H. Ren-nenberg and C. Foyer, “Glutathione: Biosynthesis, Me-tabolism and Relationship to Stress Tolerance Explored in Transformed Plants,” Journal of Experimental Botany, Vol. 49, 1988, pp. 623-647. doi:10.1093/jexbot/49.321.623
[20] C. Langebartels, K. Kerner, S. Leonardi, M. Schraudner, M. Trost, W. Heller and H. Sandermann, “Jr. Biochemical Plant Responses to Ozone. Differential Induction of Polyamine and Ethylene Biosynthesis in Tobacco,” Plant Physiology, Vol. 95, 1991, pp. 882-889. doi:10.1104/pp.95.3.882
[21] Z. G. Liu, H. Hsu, D. V. Goeddel and M. Karin, “Dissec-tion of TNF Receptor 1 Effector Functions: JNK Activa-tion Is Not Linked to Apoptosis While NF-kB Activation Prevents Cell Death,” Cell, Vol. 87, No. 3, 1996, pp. 565- 576. doi:10.1016/S0092-8674(00)81375-6
[22] J. M. Kyriakis and J. Avruch, “Protein Kinase Cascades Activated by Stress and Inflammatory Cytokines,” Bio-essays, Vol. 18, No. 7, 1996, pp. 567-577. doi:10.1002/bies.950180708
[23] R. Aikawa, I. Komuro, T. Yamazaki, Y. Zou, S. Kudoh, M. Tanaka, I. Shiojima, Y. Hiroi and Y. Yazaki, “Oxida-tive Stress Activates Extracellular Signal Related Kinases through Src and Ras in Cultured Cardiac Myocytes of Neonatal Rats,” Journal of Clinical Investigation, Vol. 100, No. 7, 1997, pp. 1813-1821. doi:10.1172/JCI119709
[24] M. Mori, M. Uchida, T. Watanabe, K. Kirito, K. Hatake, K. Ozawa and N. Komatsu, “Activation of Extracellular Signal Related Kinases ERK1 and ERK2 Induces Bcl-xL up-Regulation via Inhibition of Caspase Activities in Ery- thropoietin Signaling,” Journal of Cell Physiology, Vol. 195, No. 2, 2003, pp. 290-297. doi:10.1002/jcp.10245
[25] T. E. Soderstrom, M. Poukkula, T. H. Holmstrom, K. M. Heiskanen and J. E. Eriksson, “Mitogen-Activated Protein kinase/Extracellular Signal-Related Kinase Signaling in Activated T Cells Abrogates TRAIL-Induced Apoptosis Upstream of the Mitochondrial Amplification Loop and Caspase-8,” Journal of Immunology, Vol. 169, 2002, pp. 2851-2860.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.