Hydralazine Hydrochloride: An Alternative Complexometric Reagent for Total Iron Spotometric Determination


An alternative spectrophotometric method has been developed for total iron determination using flow injection analysis (FIA). The procedure is based on the coordination reaction between hydralazine and Fe2+ ions, which results in the formation of a purple complex monitored at 538 nm. For determination of total iron, Fe3+ ions were reduced using ascorbic acid. Under optimized conditions, a linear calibration graph (0.1 - 6.0 ?g?ml–1; n = 6) was obtained. The method allows LOD (3? of blank/slope = 0.06 ?g?ml–1) and LOQ (10? of blank/slope = 0.22 ?g?ml–1). The RSD ((s/ ) × 100) for a mixed standard containing 0.60 ?g?ml–1 Fe2+ and Fe3+ was 0.10% (n = 10). Recoveries of spiked samples were 94.3% - 106.0%. The analytical frequency was 60 h–1. The effect of possible interferences has been studied. The procedure was successfully applied for analysis of environmental samples. The real samples results were comparable with those obtained by the official method considering a paired t-test and 95% of confidence level.

Share and Cite:

A. Gonsalves, C. Araújo, C. Galhardo, M. Goulart and F. Abreu, "Hydralazine Hydrochloride: An Alternative Complexometric Reagent for Total Iron Spotometric Determination," American Journal of Analytical Chemistry, Vol. 2 No. 7, 2011, pp. 776-782. doi: 10.4236/ajac.2011.27089.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. Ruengsitagoon, “Reverse Flow Injection Spectropho-tometric Determination of Iron(III) Using Chlortetracycline Reagent,” Talanta, Vol. 74, No. 5, 2008, pp. 1236- 1241. doi:10.1016/j.talanta.2007.08.031
[2] T. Pojanagaroon, S. Watanesk, V. Rattanaphani and S. Liawrungrath, “Reverse Flow Injection Spectrophotome-tric Determination of Iron (III) Using Norfloxacin,” Ta-lanta, Vol. 58, No. 6, 2002, pp. 1293-1300. doi:10.1016/S0039-9140(02)00420-4
[3] M. Otomo, S. Ano and H. Kako, “Solvent Extraction and Spectrophotometric Determination of Iron(II) with 2,2’- Dipyridyl-2-Quinolylhydrazone,” Microchemical Journal, Vol. 26, No. 2, 1981, pp. 228-235. doi:10.1016/0026-265X(81)90094-1
[4] D. M. C. Gomes, M. A. Segundo, J. L. F. C. Lima and A. O. S. S. Rangel, “Spectrophotometric Determination of Iron and Boron in Soil Extracts Using a Multi-Syringe Flow Injection System,” Talanta, Vol. 66, No. 3, 2005, pp. 703-711. doi:10.1016/j.talanta.2004.12.011
[5] M. G. Gioia, A. M. Di Pietra and R. Gatti, “Validation of a Spectrophotometric Method for the Determination of Iron (III) Impurities in Dosage Forms,” Journal of Phar-maceutical and Biomedical Analysis, Vol. 29, No. 6, 2002, pp. 1159-1164. doi:10.1016/S0731-7085(02)00170-X
[6] D. G. Themelis, P. D. Tzanavaras, F. S. Kika and M. C. Sofoniou, “Flow-Injection Manifold for the Simultaneous Spectrophotometric Determination of Fe(II) and Fe(III) Using 2,2’-Dipyridyl-2-Pyridylhydrazone and a Single- Line Double Injection Approach,” Fresenius Journal of Analytical Chemistry, Vol. 371, No. 3, 2001, pp. 364-368. doi:10.1007/s002160100930
[7] S. Ohno, N. Teshima, T. Sakai, K. Grudpan and M. Pola-sek, “Sequential Injection Lab-on-Valve Simultaneous Spectrophotometric Determination of Trace Amounts of Copper and Iron,” Talanta, Vol. 68, No. 3, 2006, pp. 527- 534. doi:10.1016/j.talanta.2005.04.073
[8] K. A. Riganakos and P. G. Veltsistas, “Comparative Spectrophotometric Determination of the Total Iron Con-tent in Various White and Red Greek Wines,” Chemistry, Vol. 82, No. 4, 2003, pp. 637-643.
[9] M. Kass and A. Ivaska, “Spectrophotometric Determina-tion of Iron(III) and Total Iron by Sequential Injection Analysis,” Talanta, Vol. 58, No. 6, 2002, pp. 1131-1137. doi:10.1016/S0039-9140(02)00439-3
[10] T. Nakanishi and M. Otomo, “Solvent Extraction and Spectrophotometric Determination of Iron(II) with di-2- Pyridyl Ketone Benzoylhydrazone,” Microchemical Jour- nal, Vol. 33, No. 2, 1986, pp. 172-178. doi:10.1016/0026-265X(86)90051-2
[11] T. Nakanishi and M. Otomo, “Solvent Extraction and Spectrophotometric Determination of Iron(II) with 2,2’- Dipyridyl-2-Furancarbothiohydrazone,” Microchemical Journal, Vol. 28, No. 1, 1983, pp. 99-106. doi:10.1016/0026-265X(83)90034-6
[12] K. Ueda, O. Yoshimura and Y. Yamamoto, “Rapid Spec-trophotometric Determination of Iron in Natural Waters with 4-(2-Thiazolylazo)-6-Chlororesorcinol,” Microchem- ical Journal, Vol. 31, No. 3, 1985, pp. 403-409. doi:10.1016/0026-265X(85)90134-1
[13] Y. Xiong, H. Zhou, Z. Zhang, D. He and C. He, “Deter-mination of Hydralazine with Flow Injection Chemilu-minescence Sensor Using Molecularly Imprinted Polymer as Recognition Element,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 41, No. 3, 2006, 694-700. doi:10.1016/j.jpba.2006.01.008
[14] S. Imad, S. Nisar and Z. T. Maqsood, “A Study of Redox Properties of Hydralazine Hydrochloride, an Antihyperten-sive Drug,” Journal of Saudi Chemical Society, Vol. 14, No. 3, 2010, pp. 241-245. doi:10.1016/j.jscs.2010.02.003
[15] A. Daiber, A. Mülsch, U. Hink, H. Mollnau, A. Warn-holtz, M. Oelze and T. Münzel, “The Oxidative Stress Concept of Nitrate Tolerance and the Antioxidant Proper-ties of Hydralazine,” The American Journal of Cardiology, Vol. 96, No. 7, 2005, pp. 25-36. doi:10.1016/j.amjcard.2005.07.030
[16] A. A. Shoukry and M. M. Shoukry, “Coordination Prop-erties of Hydralazine Schiff Base: Synthesis and Equili-brium Studies of Some Metal Ion Complexes,” Spectro-chimica Acta Part A: Molecular and Biomolecular Spec-troscopy, Vol. 70, No. 3, 2008, pp. 686-691. doi:10.1016/j.saa.2007.08.022
[17] J. C. Miller and J. N. Miller, “Statistics for Analytical Chemistry,” Ellis Horwood, New York, 1993.
[18] E. S. Faquim and C. S. Munita, “Determination of Copper by Isotopic Dilution,” Biological Trace Element Research, Vol. 43, No. 1, 1994, pp. 669-677. doi:10.1007/BF02917370
[19] J. W. Stucki and W. L. Anderson, “The Quantitative As-say of Minerals for Fe2+ and Fe3+ Using 1,10-Phenan- throline: I. Sources of Variability,” Soil Science Society of America Journal, Vol. 45, No. 3, 1981, pp. 633-637. doi:10.2136/sssaj1981.03615995004500030039x

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.