Determination of Trace Amounts of Lead by Modified Graphite Furnace Atomic Absorption Spectrometry after Liquid Phase Microextraction with Pyrimidine-2-thiol
Saeid Nazari
.
DOI: 10.4236/ajac.2011.27087   PDF    HTML     6,533 Downloads   12,203 Views   Citations

Abstract

The liquid phase microextraction (LPME) was combined with the modified Graphite furnace atomic absorption spectrometry (GF-AAS) for determination of lead in the water and solid samples. In a preconcentration step, lead was extracted from a 2 ml of its aqueous sample in the pH = 5 as lead-Pyrimidine-2-thiol cationic complex into a 4 µl drop of 1,2 dichloroethane and ammonium tetraphenylborate as counter ion immersed in the solution. In the drop, the lead-Pyrimidine-2-thiol ammonium tetraphenylborate ion associated complex was formed. After extraction, the microdrop was retracted and directly transferred into a graphite tube modified by [W.Pd.Mg] (c). Some effective parameters on extraction and complex formation, such as type and volume of organic solvent, pH, concentration of chelating agent and counter ion, extraction time, stirring rate and effect of salt were optimized. Under the optimum conditions, the enrichment factor and recovery were 525% and 94%, respectively. The calibration graph was linear in the range of 0.01 - 12 µg?L–1 with correlation coefficient of 0.9975 under the optimum conditions of the recommended procedure. The detection limit based on the 3Sb criterion was 0.0072 µg?L–1 and relative standard deviation (RSD) for ten replicate measurement of 0.1 µg?L–1 and 0.4 µg?L–1 lead was 4.5% and 3.8% respectively. The characteristic concentration was 0.0065 µg?L–1 equivalent to a characteristic mass of 26 fg. The results for determination of lead in reference materials, spiked tap water and seawater demonstrated the accuracy, recovery and applicability of the presented method.

Share and Cite:

S. Nazari, "Determination of Trace Amounts of Lead by Modified Graphite Furnace Atomic Absorption Spectrometry after Liquid Phase Microextraction with Pyrimidine-2-thiol," American Journal of Analytical Chemistry, Vol. 2 No. 7, 2011, pp. 757-767. doi: 10.4236/ajac.2011.27087.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] ATSDR-Standards and Regulations, “Lead Toxicity Case Study,” http://www.atsdr.cdc.gov/toxprofiles/tp13.html
[2] Current Status of Lead in India, Released on World En-vironment Day 2001. http://www.envisitrc.org.in/brijesh/enviswebsite/lead.html
[3] A. K. De, “Environmental Chemistry,” 3rd Edition, New Age International (P) Limited, New Delhi, 1996.
[4] R. A. Goyer, C. D. Klaassen, M. O. Amdur and J. Doull, “Casarett and Doull’s Toxicology: The Basic Science of Poisons,” 3rd Edition, MacMillan Publishing Company, New York, 1986.
[5] H. W. Nurnberg, “Pollutants and Their Ecotoxicological Significance,” Wiley, Chichester, 1985.
[6] D. R. Lynarn, L. G. Plantanido and J. F. Cole, “Environ-mental Lead,” Academic Press, New York, 1975.
[7] J. O. Nriagu, “The Biochemistry of Lead in the Environ-mental,” Elsevier, Amsterdam, 1978.
[8] B. P. Lanphear, D. A. Burgoon, S. W. Rust, S. Eberly and W. Galke, “Environmental Exposures to Lead and Urban Children’s Blood Lead Levels,” Environmental Research, Vol. 76, No. 2, 1998, pp. 120-127. doi:10.1006/enrs.1997.3801
[9] J. Wank and E. H. Hansen, “Coupling Sequential Injection on-Line Preconcentration Using a PTFE Beads Packed Column to Direct Injection Nebulization Inductively Coupled Plasma Mass Spectrometry,” Journal of Analytical Atomic Spectrometry, Vol. 17, No. 10, 2002, pp. 1278-1283. doi:10.1039/b206387e
[10] S. J. Hill, J. Hartley and L. Ebdon, “Determination of Trace Metals in Volatile Organic Solvents Using Induc-tively Coupled Plasma Atomic Emission Spectrometry and Inductively Coupled Plasma Mass Spectrometry,” Journal of Analytical Atomic Spectrometry, Vol. 7, No. 1, 1992, pp. 23-28. doi:10.1039/ja9920700023
[11] M. A. Hamilton, P. W. Rode, M. E. Merchant and J. Sneddon, “Determination and Comparison of Heavy Metals in Selected Seafood, Water, Vegetation and Se-diments by Inductively Coupled Plasma-Optical Emission Spectrometry from an Industrialized and Pristine Water-way in Southwest Louisiana,” Microchemical Journal, Vol. 88, No. 1, 2008, pp. 52-55. doi:10.1016/j.microc.2007.09.004
[12] M. B. Dessuy, M. Vale, G. R. Souza, A. S. Ferreira, S. L. C. Welz and D. A. Katskov, “Method Development for the Determination of Lead in Wine Using Electrothermal Atomic Absorption Spectrometry Comparing Platform and Filter Furnace Atomizers and Different Chemical Modifiers,” Talanta, Vol. 74, No. 5, 2008, pp. 1321-1329. doi:10.1016/j.talanta.2007.08.048
[13] L. Narin, M. Soylak, L. Elici and M. Dogan, “Determina-tion of Trace Metal Ions by AAS in Natural Water Sam-ples after Preconcentration of Pyrocatechol Violet Com-plexes on an Activated Carbon Column,” Talanta, Vol. 52, No. 6, 2000, pp. 1041-1046. doi:10.1016/S0039-9140(00)00468-9
[14] M. Ghaedi, K. Niknam, A. Shokrollahi, E. Niknama, H. R. Rajabi and M. Soylak, “Flame Atomic Absorption Spectrometric Determination of Trace Amounts of Heavy Metal Ions after Solid Phase Extraction Using Modified Sodium Dodecyl Sulfate Coated on Alumina,” Journal of Hazardous Materials, Vol. 155, No. 1-2, 2008, pp. 121- 127. doi:10.1016/j.jhazmat.2007.11.038
[15] M. Ghaedi, F. Ahmadi and A. Shokrollahi, “Simultaneous Preconcentration and Determination of Copper, Nic- kel, Cobalt and Lead Ions Content by Flame Atomic Ab-sorption Spectrometry,” Journal of Hazardous Materials, Vol. 142, No. 1-2, 2007, pp. 272-278. doi:10.1016/j.jhazmat.2006.08.012
[16] M. Ghaedi, A. Shokrollahi,, K. Niknam,, E. Niknam, A. Najibi and M. Soylak, “Cloud Point Extraction and Flame Atomic Absorption Spectrometric Determination of Cadmium(II), Lead(II), Palladium(II) and Silver(I) in En-vironmental Samples,” Journal of Hazardous Materials, Vol. 168, No. 2-3, 2009, pp. 1022-1027. doi:10.1016/j.jhazmat.2009.02.130
[17] K. Z. Hossain and T. Honjo, “Preconcentration and De-termination of Trace Amounts of Lead (II) as Thenoyl-trifluoroacetone Complex with Dibenzo-18-Crown-6 by Synergistic Extraction and Atomic Absorption Spectro-metry,” Fresenius’ Journal of Analytical Chemistry, Vol. 361, No. 5, 1998, pp. 451-454. doi:10.1007/s002160050924
[18] J. R. Chen, S. M. Xiao, X. H. Wu, K. M. Fang and W. H. Liu, “Determination of Lead in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Cloud Point Extraction,” Talanta, Vol. 67, No. 5, 2005, pp. 992- 996. doi:10.1016/j.talanta.2005.04.029
[19] Y. Surme, I. Narin, M. Soylak, H. Yuruk and M. Dogan, “Cloud Point Extraction Procedure for Flame Atomic Absorption Spectrometric Determination of Lead(II) in Sediment and Water Samples,” Microchimica Acta, Vol. 157, No. 3-4, 2007, pp. 193-199. doi:10.1007/s00604-006-0671-1
[20] Z. L. Fang, J. Ruzicka and E. H. Hansen, “An Efficient Flow-Injection System with on-Line Ion-Exchange Pre-concentration for the Determination of Trace Amounts of Heavy Metals by Atomic Absorption Spectrometry,” Analytica Chimica Acta, Vol. 164, 1984, pp. 23-39. doi:10.1016/S0003-2670(00)85614-7
[21] M. G. Pereira, E. R. Pereira-Filho and M. A. Z. Arruda, “Determination of Cadmium and Lead at Low Levels by Using Preconcentration at Fullerene Coupled to Thermo-spray Flame Furnace Atomic Absorption Spectrometry,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 59, No. 4, 2004, pp. 515-521. doi:10.1016/j.sab.2003.12.012
[22] M. G. Pereira, E. R. Pereira-Filho and M. A. Z. Arruda, “Acrylic Acid Grafted Polytetrafluoroethylene Fiber as New Packing for Flow Injection Online Microcolumn Preconcentration Coupled with Flame Atomic Absorption Spectrometry for Determination of Lead and Cadmium in Environmental and Biological Samples,” Analytica Chi-mica Acta, Vol. 514, No. 2, 2004, pp. 151-157. doi:10.1016/j.aca.2004.03.049
[23] M. Soylak, I. Narin, M. A. Bezerra and S. L. C. Ferreira, “Factorial Design in the Optimization of Preconcentration Procedure for Lead Determination by FAAS,” Talanta, Vol. 65, No. 4, 2005, pp. 895-899. doi:10.1016/j.talanta.2004.08.011
[24] M. Tuzen, K. Parlar and M. Soylak, “Enrichment/Sepa- ration of Cadmium (II) and Lead (II) in Environmental Samples by Solid Phase Extraction,” Journal of Hazard-ous Materials, Vol. 121, No. 1-3, 2005, pp. 79-87. doi:10.1016/j.jhazmat.2005.01.015
[25] S. Wang and R. F. Zhang, “On-Line Coupling of Elec-trochemical Preconcentration in Tungsten Coil Electro-thermal Atomic Absorption Spectrometry for Determina-tion of Lead in Natural Waters,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 54, 1999, pp. 1155- 1166.
[26] M. Chamsaz, M. H. Arbab-Zavar and S. Nazari, “Deter-mination of Arsenic by Electrothermal Atomic Absorption Spectrometry Using Headspace Liquid Phase Mi-croextraction after in situ Hydride Generation,” Journal of Analytical Atomic Spectrometry, Vol. 18, No. 10, 2003, pp. 1279-1282. doi:10.1039/b303169a
[27] M. Kaykhaii, S. Nazari and M. Chamsaz, “Determination of Aliphatic Amines in Water by Gas Chromatography Using Headspace Solvent Microextraction,” Talanta, Vol. 65, No. 1, 2005, pp. 223-228. doi:10.1016/j.talanta.2004.06.019
[28] S. Nazari, “Determination of Trace Amounts of Cadmium by Modified Graphite Furnace Atomic Absorption Spec-trometry after Liquid Phase Microextraction,” Micro-chemical Journal, Vol. 90, No. 2, 2008, pp. 107-112. doi:10.1016/j.microc.2008.04.002
[29] S. Nazari, “Liquid Phase Microextraction and Ultratrace Determination of Cadmium by Modified Graphite Furnace Atomic Absorption Spectrometry,” Journal of Hazardous Materials, Vol. 165, No. 1-3, 2009, pp. 200-205. doi:10.1016/j.jhazmat.2008.09.099
[30] S. Nazari, “Determination of Gold by Electrothermal Atomic Absorption Spectrometry after Single Drop Mi-croExtraction,” Analytical Chemistry―An Indian Journal, Vol. 7, 2008, pp. 301-305.
[31] E. Carasek, J. W. Tonjes and M. Scharf, “A New Method of Microvolume Back-Extraction Procedure for Enrich-ment of Pb and Cd and Determination by Flame Atomic Absorption Spectrometry,” Talanta, Vol. 56, No. 1, 2002, pp. 185-191. doi:10.1016/S0039-9140(01)00556-2
[32] G. Doner and A. Ege, “Determination of Copper, Cad-mium and Lead in Seawater and Mineral Water by Flame Atomic Absorption Spectrometry after Coprecipitation with Aluminum Hydroxide,” Analytica Chimica Acta, Vol. 547, No. 1, 2005, pp. 14-17. doi:10.1016/j.aca.2005.02.073
[33] E. Matoso, L. T. Kubota and S. Cadore, “Use of Silica Gel Chemically Modified with Zirconium Phosphate for Preconcentration and Determination of Lead and Copper by Flame Atomic Absorption Spectrometry,” Talanta, Vol. 60, No .6, 2003, pp. 1105-1111. doi:10.1016/S0039-9140(03)00215-7
[34] G. A. Zachariadis, A. N. Anthemidis, P. G. Bettas and J. A. Stratis, “Determination of Lead by on-Line Solid Phase Extraction Using a PTFE Micro-Column and Flame Atomic Absorption Spectrometry,” Talanta, Vol. 57, No. 5, 2002, pp. 919-927. doi:10.1016/S0039-9140(02)00132-7
[35] J. Chen and K. C. Teo, “Determination of Cadmium, Copper, Lead and Zinc in Water Samples by Flame Atomic Absorption Spectrometry after Cloud Point Extraction,” Analytica Chimica Acta, Vol. 450, No. 1-2, 2001, pp. 215-222. doi:10.1016/S0003-2670(01)01367-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.