Morphological and Physiological Responses of Weedy Red Rice (Oryza sativa L.) and Cultivated Rice (O. sativa) to N Supply


Red rice (Oryza sativa L.), a noxious weed in rice production, competes with cultivated rice for nutrients. Accumulation of more N in red rice than in cultivated rice may be due to a mechanism different from that of cultivated rice. To test this assumption, red rice and cultivated rice were grown in nutrient solution to compare their growth and physiological responses to N supply. Experimental design was a split-plot, where main plot factor was rice type (Stf-3, ‘Wells’); split-plot factor was N treatment [T1 (complete nutrient solution); T2 (–NH4NO3); T3 (+NH4NO3 for 24-h post-N deficiency); and T4 (+NH4NO3 for 48-h post-N deficiency)]. Nitrogen deficiency was defined as N sufficiency index (NSI) < 95%. Height, tiller number, biomass, and root morphology were monitored to determine morphological responses. Stf-3 red rice had significantly greater growth measurements than Wells in terms of shoot and root characteristics. At T4, Stf-3 showed higher increment in root length and surface area than Wells. Shoot tissue concentrations of N and total sugars were measured to determine physiological response in N-deficient and N-supplemented plants. Stf-3 had greater N and sucrose tissue concentrations at N-deficient conditions compared with Wells, implying a stress-adaptive molecular mechanism regulated by N and sucrose availability.

Share and Cite:

M. Sales, N. Burgos, V. Shivrain, B. Murphy and E. Gbur, "Morphological and Physiological Responses of Weedy Red Rice (Oryza sativa L.) and Cultivated Rice (O. sativa) to N Supply," American Journal of Plant Sciences, Vol. 2 No. 4, 2011, pp. 569-577. doi: 10.4236/ajps.2011.24068.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. Childs and J. Livezey, “Rice Backgrounder,” 2008.
[2] J. C. Delouche, N. R. Burgos, D. R. Gealy, G. Z. De San Martin, R. Labrada, M. Larinde and C. Rosell, “Weedy Rices: Origin, Biology, Ecology and Control,” FAO Plant Production and Protection Paper 188, FAO-UN, Rome, 2007.
[3] N. R. Burgos, J. K. Norsworthy, R. C. Scott and K. L. Smith, “Red Rice (Oryza sativa) Status after Five Years of Imidazolinone-Resistant Rice Technology in Arkansas,” Weed Technology, Vol. 22, No. 1, 2008, pp. 200-208. doi:10.1614/WT-07-075.1
[4] V. K. Shivrain, “Molecular Characterization of the Acetolactate Synthase (ALS) Gene and Phenotypic Diversity in Red Rice (Oryza sativa L.),” M.S. Thesis, University of Arkansas, Fayetteville, 2004.
[5] R. J. Smith, “Weed Thresholds in Southern U.S. Rice (Oryza sativa),” Weed Technology, Vol. 2, 1988, pp. 232- 241.
[6] R. J. Norman, C. E. Wilson Jr. and N. A. Slaton, “Soil Fertilization and Rice Nutrition in Mechanized Rice Culture”, In: C. W. Smith and R. H. Dilday, Eds., Rice: Origin, History, Technology and Production, Wiley Sciences, New York, 2003, pp. 331-411.
[7] N. R. Burgos, R. J. Norman, D. R. Gealy and H. Black, “Comparative N Uptake between Rice and Weedy Rice,” Field Crops Research, Vol. 99, No. 2-3, 2006, pp. 96-105. doi:10.1016/j.fcr.2006.03.009
[8] H. Marschner, “Mineral Nutrition of Higher Plants,” Academic Press, San Diego, 1995.
[9] N. M. Crawford, “Nitrate: Nutrient and Signal for Plant Growth,” Plant Cell, Vol. 7, 1995, pp. 859-868.
[10] M. Stitt and A. Krapp, “The Molecular Physiological Basis for the Interaction between Elevated Carbon Dioxide and Nutrients,” Plant, Cell and Environment, Vol. 22, No. 6, 1999, pp. 583-622. doi:10.1046/j.1365-3040.1999.00386.x
[11] J. L. Havlin, J. D. Beaton, S. L. Tisdale and W. L. Nelson, “Soil Fertility and Fertilizers: An Introduction to Nutrient Management,” Prentice-Hall, Upper Saddle River, New Jersey, 2005.
[12] W. G. Hopkins and P. A. Huner, “Introduction to Plant Physiology,” John Wiley and Sons, Inc., Hoboken, New Jersey, 2004.
[13] K. Hikosaka, “Interspecific Difference in the Photosynthesis―Nitrogen Relationship: Patterns, Physiological causes and Ecological Importance,” Journal of Plant Research, Vol. 117, 2004, pp. 481-494.
[14] M. J. Paul and T. K. Pellny, “Carbon Metabolite Feedback Regulation of Leaf Photosynthesis and Develop- ment,” Journal of Experimental Botany, Vol. 54, No. 132, 2003, pp. 539-547. doi:10.1093/jxb/erg052
[15] M. J. Paul and C. H. Foyer, “Sink Regulation of Photosynthesis,” Journal of Experimental Botany, Vol. 52, 2001, pp. 1383-1400. doi:10.1093/jexbot/52.360.1383
[16] B. Arnhold-Schmitt, “Stress-Induced Cell Reprogram- ming. A Role for Global Genome Regulation,” Plant Physiology, Vol. 136, No. 1, 2004, pp. 2579-2586. doi:10.1104/pp.104.042531
[17] M. Bagayoko, S. Alvey, G. Neumann and A. Buerkert, “Root-Induced Increases in Soil pH and Nutrient Avail- ability to Field-Grown Cereals and Legumes on Acid Sandy Soils of Sudano-Sahelian West Africa,” Plant and Soil, Vol. 225, No. 1-2, 2000, pp. 117-127. doi:10.1023/A:1026570406777
[18] Z. Rengel and P. Marschner, “Nutrient Availability and Management in the Rhizosphere: Exploiting Genotypic Differences,” New Phytologist, Vol. 168, 2005, pp. 305-312.
[19] N. von Wirén, S. Gazzarrini and W. B. Frommer, “Regulation of Mineral Nitrogen Uptake in Plants,” Plant and Soil, Vol. 196, No. 2, 1997, pp.191-199. doi:10.1023/A:1004241722172
[20] R. Tischner, “Nitrate Uptake and Reduction in Higher and Lower Plants,” Plant, Cell and Environment, Vol. 23, No. 10, 2000, pp. 1005-1024. doi:10.1046/j.1365-3040.2000.00595.x
[21] S. Gazzarrini, L. Lejay, A. Gojon, O. Ninnemann, W. B. Frommer and N. von Wirén, “Three Functional Trans- porters for Constitutive, Diurnally Regulated, and Starvation-Induced Uptake of Ammonium into Arabidopsis Roots,” Plant Cell, Vol. 11, 1999, pp. 937-948.
[22] S. U. Aubert, E. Gout, R. Bligny, D. Marty-Mazars, F. Barrieu, J. Alabouvette, F. Marty and R. Douce, “Ultra- structural and Biochemical Characterization of Auto-phagy in Higher Plant Cells Subjected to Carbon Deprivation: Control by the Supply of Mitochondria with Respiratory Substrates,” Journal of Cell Biology, Vol. 133, 1996, pp. 1251-1263. doi:10.1083/jcb.133.6.1251
[23] T. W. Rufty, S. C. Huber and R. J. Volk, “Alterations in Leaf Carbohydrate Metabolism in Response to Nitrogen Stress,” PlantPhysiology, Vol. 88, No. 3, 1988, pp. 725-730. doi:10.1104/pp.88.3.725
[24] E. A. Schmelz, H. T. Alborn, J. Engelberth and J. H. Tumlinson, “Nitrogen Deficiency Increases Volicitin- Induced Volatile Emission, Jasmonic Acid Accumulation, and Ethylene Sensitivity in Maize,” Plant Physiology, Vol. 133, No. 1, 2003, pp. 295-306. doi:10.1104/pp.103.024174
[25] R. Brouquisse, F. James, P. Raymond and A. Pradet, “Study of Glucose Starvation in Excised Maize Root Tips,” Plant Physiology, Vol. 96, No. 2, 1991, pp. 619-626. doi:10.1104/pp.96.2.619
[26] R. Brouquisse, J. P. Gaudillere and P. Raymond, “Induction of Carbon-Starvation-Related Proteolysis in Whole Maize Plants Submitted to Light/Dark Cycles and to Extended Darkness,” Plant Physiology, Vol. 117, No. 4, 1998, pp. 1281-1291. doi:10.1104/pp.117.4.1281
[27] M. H. Chen, L. F. Liu, Y. R. Chen, H. K. Wu and S. M. Yu, “Expression of α-Amylases, Carbohydrate Metabolism, and Autophagy in Cultured Rice Cells is Coordinately Regulated by Sugar Nutrient,” Plant Journal, Vol. 6, No. 5, 1994, pp. 625-636. doi:10.1046/j.1365-313X.1994.6050625.x
[28] T. Inamura, S. Miyagawa, O. Singvilay, N. Sipaseauth and Y. Kono, “Competition between Weeds and Wet Season Transplanted Paddy Rice for N Use, Growth and Yield in the Central and Northern Regions of Laos,” Weed Biology and Management, Vol. 3, No. 4, 2003, pp. 213-221. doi:10.1046/j.1444-6162.2003.00106.x
[29] S. R. Radosevich, “Methods of Interactions among Crops and Weeds,” Weed Technology, Vol. 1, 1987, pp. 190-198.
[30] L. E. Estorninos Jr., D. R.Gealy and R. E. Talbert, “Growth Response of Rice (Oryza sativa) and Rice (O. sativa) in a Replacement Series Study”, Weed Technology, Vol. 16, No. 2, 2002, pp. 401-106. doi:10.1614/0890-037X(2002)016[0401:GROROS]2.0.CO;2
[31] L. E. Estorninos Jr., D. R. Gealy, R. E. Talbert and M. R. McClelland, “Rice and Red Rice Interference II: Rice Response to Population Densities of Three Red Rice (Oryza sativa) Ecotypes,” Weed Science, Vol. 53, No. 5, 2005, pp. 683-689. doi:10.1614/WS-04-040R1.1
[32] V. K. Shivrain, N. R. Burgos, R. C. Scott, E. E. Gbur Jr., L. E. Estorninos Jr. and M. R. McClelland, “Diversity of Weedy Red Rice (Oryza sativa L.) in Arkansas, U.S.A. in Relation to Weed Management,” Crop Protection, Vol. 29, 2010, pp. 721-730. doi:10.1016/j.cropro.2010.02.010
[33] K. A. K. Moldenhauer, F. N. Lee, J. L. Bernhardt, R. J. Norman, N. A. Slaton, C. E. Wilson, M. M. Anders, R. D. Cartwright and M. M. Blocker, “Registration of ‘Wells’ Rice,” Crop Science, Vol. 47, 2007, pp. 442-443. doi:10.2135/cropsci2006.06.0419
[34] C. E. Wilson Jr. and J. W. Branson, “Trends in Arkansas Rice Production,” In: R. J. Norman, J. F. Meullenet and K. A. K. Moldenhauer, eds., B. R. Wells Rice Research Studies, Agricultural Experiment Station Research Series 550, Fayetteville, 2006, pp. 13-22.
[35] S. Yoshida, D. A. Forno, J. H. Cock and K. A. Gomez, “Laboratory Manual for Physiological Studies of Rice,” 3rd edition, International Rice Research Institute, Laguna, 1979.
[36] P. A. Counce, T. C. Keisling and A. J. Mitchell, “A Uniform, Objective, and Adaptive System for Expressing Rice Development,” Crop Science, Vol. 40, No. 2, 2000, pp. 436-443. doi:10.2135/cropsci2000.402436x
[37] T. A. Peterson, T. M. Blackner, D. D. Francis and J. S. Schepers, “Using a Chlorophyll Meter to Improve N Management,” University of Nebraska Cooperative Extension, Lincoln, 1996.
[38] F. E. Groves, “Biology and Control of Yellow Nutsedge (Cyperusesculentus) in Cotton (Gossypium hirsutum),” M. S. Thesis, University of Arkansas, Fayetteville, 2004.
[39] K. Matsuda, “On the Germination of Seeds of Rice Varieties at Low Temperature (preliminary) [in Japanese],” Proceedings of the Crop Science Society of Japan, Vol. 2, 1930, pp. 263-268. doi:10.1626/jcs.2.263
[40] C. L. Pan, “A Preliminary Report of Varietal Differences in Rapidity of Germination in Rice,” Journal of the American Society for Agriculture, Vol. 28, 1936, pp. 985- 989. doi:10.2134/agronj1936.00021962002800120004x
[41] K. Wada, “Effect of Lower Temperature on Germination of Rice Seed Originating in Different Localities [in Japanese, English Summary],” Proceedings of the Crop- Science Society of Japan, Vol. 18, 1949, pp. 38-39.
[42] K. Sato, “The Development of Rice Grains under Con- trolled Environment. III. Germinability of Seeds Ripened under Different Environmental Conditions,” Tohoku Journal of Agricultural Research, Vol. 24, 1973, pp. 14- 21.
[43] A. Osada, “Studies on the Photosynthesis of Indica Rice,” Japanese Journal of Crop Science, Vol. 33, No. 1, 1964, pp. 69-76. doi:10.1626/jcs.33.69
[44] H. Oka, “Tillering and Elongation Rates, Culm Length and Other Characters in Rice Varieties in Response to Temperature [in Japanese, English Summary],” Japan Journal of Breeding, Vol. 4, No. 4, 1955, pp. 213-221.
[45] H. Oka, “Intervarietal Variation and Classification of Cultivated Rice,” Indian Journal of Genetics and Plant Breeding, Vol. 18, 1958, pp. 79-89.
[46] H. Oka H, “Variations in Temperature Responses among Cultivated Rice Varieties,” Phyton, Vol. 12, 1959, pp. 1- 11.
[47] M. L. Shen and I. T. Wey, “Studies on the Local Adaptability of Paddy Rice Varieties Using Multi-variate Linear Regression Analysis [in Chinese, English summary],” Journal of the Agricultural Association of China, Vol. 71, 1970, pp.1-13.
[48] N. Slaton, K. Moldenhauer, C. Wilson Jr., R. Cartwright, J. Gibbons, B. Koen, J. Bernhardt, F. Lee and J. Robinson, “Wells: A Summary of Research and Management Recommendations,” Rice Information 44, University of Arkansas Cooperative Extension Service, Fayetteville, 2000, pp. 1-8.
[49] X. B. Wang, P. Wu, M. Xia, Z. Wu, Q. Chen and F. Liu, “Identification of Genes Enriched in Rice Roots of the Local Nitrate Treatment and Their Expression Patterns in Split-Root Treatment,” Gene, Vol. 297, 2002, pp. 93-102. doi:10.1016/S0378-1119(02)00870-3
[50] X. B. Wang, P. Wu, B. Hu and Q. S. Chen, “Effects of Nitrate on Rice Lateral Root Morphology and Nitrogen Absorption in Rice (Oryza sativa L.),” Acta Botanica Sinica, Vol. 44, 2002, pp. 678-683.
[51] S. Gilroy and D. L. Jones, “Through Form to Function: Root Hair Development and Nutrient Uptake,” Trends in Plant Science, Vol. 5, 2000, pp.56-60. doi:10.1016/S1360-1385(99)01551-4
[52] I. Couee, C. Sulmon,G. Gouesbet and A.El Amrani, “Involvement of Soluble Sugars in Reactive Oxygen Species Balance and Responses to Oxidative Stress in Plants,” Journal of Experimental Botany, Vol. 57, No. 3, 2006, pp. 449- 459. doi:10.1093/jxb/erj027
[53] C. V. Givan, “Metabolic Detoxification of Ammonia in Tissues of Higher Plants,” Phytochemistry, Vol. 18, 1979, pp. 375-382. doi:10.1016/S0031-9422(00)81870-1
[54] C. P. Vance and G. H. Heichel, “Carbon in N2 Fixation: Limitation or Exquisite Adaptation,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 42, 1991, pp. 373-392. doi:10.1146/annurev.pp.42.060191.002105
[55] J. K. Schjoerring, S. Husted, G. Mack and M. Mattsson, “The Regulation of Ammonium Translocation in Plants,” Journal of Experimental Botany, Vol. 53, No. 370, 2002, pp. 883-890. doi:10.1093/jexbot/53.370.883
[56] I. Ciereszko, H. Johansson and L. A. Kleczkowski, “Sucrose and Light Regulation of a Cold-Inducible UDP- glucose Pyrophosphorylase Gene via a Hexokinase-Independent and Abscisic Acid-Insensitive Pathway in Arabidopsis,” Biochemistry Journal, Vol. 354, No. 67-72, 2001, pp. 67-72. doi:10.1042/0264-6021:3540067
[57] T. J. Chiou and D. R. Bush, “Sucrose is a Signal Molecule in Assimilate Partitioning,” Proceedings of the Na- tional Academy of Sciences USA, Vol. 95, 1998, pp. 4784-4788.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.