Effect of AgI on Conduction Mechanism in Silver-Vanadate Superionic Glasses

Abstract

A quaternary super-ionic glass system xAgI: (95-x) [Ag2O:2V2O5]: 5TeO2, where 40 ≤ x ≤ 65 in steps of 5, has been pre- pared by melt quenching technique. The prepared glass samples are characterized by X-ray, FTIR and DSC studies. As revealed by the FTIR spectra, the oxyanion network is not affected by the addition of AgI. The frequency dependence of the electrical conductivity for various glass compositions at different temperatures has been analyzed in terms of Jon- scher’s universal power law. The measurements reveal that the conductivity increases from σ = 7.62 × 10–7 S/cm to 1.15 × 10–4 S/cm with increasing AgI content. The temperature dependent conductivity obeys the Arrhenius relationship. The impedance and modulus studies indicate the non-debye type of the frequency dispersion for all the glass samples.

Share and Cite:

P. Sharma, D. Kanchan, M. Pant, M. Jayswal and N. Gondaliya, "Effect of AgI on Conduction Mechanism in Silver-Vanadate Superionic Glasses," New Journal of Glass and Ceramics, Vol. 1 No. 3, 2011, pp. 112-118. doi: 10.4236/njgc.2011.13016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Dutta and A. Ghosh, “Dynamics of Ag+ Ions in Binary Tellurite Glasses,” Physical Review E, Vol. 52, No. 2, 2005, pp. 024201-024203. doi:10.1103/PhysRevB.72.024201
[2] K. P. Padmasree and D. K. Kanchan, “Conductivity and Dielectric Studies on 20CdI2-80[xAg2O-y(0.7V2O5- 0.3B2O3) Super Ion Conducting System Where 1?x/y?3,” Journal of Non-Crystalline Solids, Vol. 352, No. 36-37, 2006, pp. 3841-3848. doi:10.1016/j.jnoncrysol.2006.06.012
[3] J. E. Garbarczyk, P. Machowski, M. Wasiucionek and W. Jakubowski, “Electrical Properties of AgI-Ag2O-V2O5-P2O5 Glasses,” Solid State Ionics, Vol. 157, No. 1-4, 2003, pp. 269-273. doi:10.1016/S0167-2738(02)00220-5
[4] A. K. Arof and S. Radhakrishna, “Electrical Properties of Silver Vanadate Electrochemical Cells,” Journal of Alloys and Compounds, Vol. 200, No. 1-2, 1993, pp. 129-134. doi:10.1016/0925-8388(93)90482-3
[5] T. Minami, “Preparation and Properties of Superionic Conducting Glasses Based on Silver Halides,” Journal of Non-Crystalline Solids, Vol. 56, No. 1-3, 1983, pp. 15-26. doi:10.1016/0022-3093(83)90440-4
[6] M. Pant, D. K. Kanchan, P. Sharma and M. S. Jayswal, “Mixed Conductivity Studies in Silver Oxide Based Ba-rium Vanado-Tellurite Glasses,” Material Science and Engineering B, Vol. 149, No. 1, 2008, pp. 18-25. doi:10.1016/j.mseb.2007.11.037
[7] G. El-Damrawi, “Silver Ion Transporting Mechanism in Superionic Conducting AgI-Ag2O-TeO2,” Journal of Physics: Condensed Matter, Vol. 11, No. 33, 1999, pp. 6385-6394. doi:10.1088/0953-8984/11/33/308
[8] R. A. Montani, A. Lorente and A. M. Frechero, “Effect of Ag2O on the Conductive Behaviour of Silver Vanadium Tellurite Glasses,” Solid State Ionics, Vol. 146, No. 2-3, 2002, pp. 323-327. doi:10.1016/S0167-2738(01)01023-2
[9] J. R. Macdonald, “Impedance Spectroscopy and its Use in Analyzing the Steady State Ac Response of Solid and Liquid Electrolytes,” Journal of Electroanalytical Chemi-stry and Interfacial Electrochemistry, Vol. 223, No. 1-2, 1987, pp. 25-50. doi:10.1016/0022-0728(87)85249-X
[10] M. Pant, D. K. Kanchan and N. Gondaliya, “Transport Properties and Relaxation Studies in BaO Substituted Ag2O-V2O5-TeO2 Glass System,” Material Chemistry and Physics, Vol. 115, No. 1, 2009, pp. 98-104. doi:10.1016/j.matchemphys.2008.11.047
[11] M. D. Ingram, “Ionic Conductivity in Glass,” Physics and Chemistry of Glasses, Vol. 28, 1987, pp. 215-234.
[12] J. Kawamura, S. Rikito, M. Shinya and M. Shimoji, “AC Conductivity of Li2O---Na2O---B2O3 Mixed-Alkali Gla- sses: Analysis Due to Transition Rate Distribution,” Solid State Ionics, Vol. 25, No. 2-3, 1987, pp. 155-164. doi:10.1016/0167-2738(87)90115-9
[13] N. Satyanaryan, A. Karthikeyan and M. Venkateswarlu, “AC Conductivity Studies on the Silver Molybdo-Arsenate Glassy System,” Journal of Material Science, Vol. 31, No. 20, 1996, pp. 5471-5477. doi:10.1007/BF01159319
[14] A. K. Jonscher, “The ‘Universal’ Dielectric Response,” Na- ture, Vol. 267, 1977, pp. 673-679. doi:10.1038/267673a0
[15] D. P. Almond, C. K. Duncan and A. R. West, “The De-termination of Hopping Rates and Carrier Concentrations in Ionic Conductors by a New Analysis of AC Conduc-tivity,” Solid State Ionics, Vol. 8, No. 2, 1983, pp. 159-164. doi:10.1016/0167-2738(83)90079-6
[16] D. P. Almond and A. R. West, “Impedance and Modulus Spectroscopy of Real Dispersive Conductors,” Solid State Ionics, Vol. 11, No. 1, 1983, pp. 57-64. doi:10.1016/0167-2738(83)90063-2
[17] J. M. Reau, X. Y. Jun, J. Senegas, C. L. Deit and M. Pou-lain, “Influence of Network Modifiers on Conductivity and Relaxation Parameters in Some Series of Fluoride Glasses Containing LiF,” Solid State Ionics, Vol. 95, No. 3-4, 1997, pp. 191-197. doi:10.1016/S0167-2738(96)00564-4
[18] R. J. Grant, M. D. Ingram and A. R.West, “An Investiga-tion of ?-alumina Electrolytes by Electric Modulus Spec-troscopy,” Electrochimica Acta, Vol. 22, No. 7, 1977, pp. 729-734. doi:10.1016/0013-4686(77)80027-3
[19] J. M. Reau, S. Rossignol, B. Tanguy, J. M. Rojo, P. Her-rero, R. M. Rojas and J. Sanz, “Conductivity Relaxation Parameters of Some Ag+ Conducting Tellurite Glasses Containing AgI or the (AgI)0.75 (T1I)0.25 Eutectic Mixture,” Solid State Ionics, Vol. 74, No. 1-2, 1994, pp. 65-73. doi:10.1016/0167-2738(94)90438-3
[20] M. Sural, A. Ghosh, “Electric Conductivity and Relaxation in ZnF2–AlF3–PbF2–LiF Glasses,” Solid State Ionics, Vol. 130, No. 3-4, 2000, pp. 259-266. doi:10.1016/S0167-2738(00)00641-X
[21] P. B. Macedo, C. T. Moynihan and R. Bose, “The Role of Ionic Diffusion in Polarization in Vitreous Ionic Conduc- tors,” Physics and Chemistry of Glasses, Vol. 13, 1972, pp. 171-179.
[22] G. Williams and D. C. Watts, “Non-Symmetrical Dielectric Relaxation Behavior Arising from a Simple Empirical Decay Function,” Transactions of the Faraday Society, Vol. 66, 1970, 80-85, doi: 10.1039/TF9706600080.
[23] A. Pan and A. Ghosh, “Dynamics of Lithium Ions in Bis- muthate Glasses,” Journal of Chemical Physics, Vol. 112, No. 3, 2000, pp. 1503-1509. doi:10.1063/1.480717H

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.