Cilostazol Enhances Oxidative Glucose Metabolism in Both Neurons and Astroglia without Increasing Ros Production
Shinichi Takahashi, Yoshikane Izawa, Norihiro Suzuki
DOI: 10.4236/pp.2011.24040   PDF   HTML     3,652 Downloads   7,511 Views   Citations


Cilostazol, a potent inhibitor of type 3 phosphodiesterase (PDE3), has recently been reported to exert neuroprotective effects during acute cerebral ischemic injury. These effects are, at least in part, mediated by the inhibition of oxidative cell death. However, the effects of cilostazol on glucose metabolism in brain cells have not been determined. In the present study, we examined the effects of cilostazol on the oxidative metabolism of glucose and the resultant formation of reactive oxygen species (ROS) in cultured neurons and astroglia. Cultures of neurons or astroglia were prepared from Sprague-Dawley rats. The cells were treated with cilostazol (0 – 30 μM) for 48 hours prior to the assay. L-[U-14C]lactate ([14C]lactate) or [1-14C]pyruvate ([14C]pyruvate) oxidation was measured. ROS production was determined using an H2DCFDA assay with a microplate reader. Forty-eight hours of exposure to cilostazol resulted in dose-dependent increases in [14C]lactate and [14C]pyruvate oxidation in both the neurons and astroglia. Dibutyryl cyclic AMP (0 – 0.5 mM) also increased [14C]lactate oxidation, indicating cAMP-mediated PDH activation. In contrast, free radical formation was not affected by cilostazol in either the neurons or astroglia. Cilostazol enhanced the oxidative metabolism of glucose in both neurons and astroglia, while it did not augment ROS production.

Share and Cite:

S. Takahashi, Y. Izawa and N. Suzuki, "Cilostazol Enhances Oxidative Glucose Metabolism in Both Neurons and Astroglia without Increasing Ros Production," Pharmacology & Pharmacy, Vol. 2 No. 4, 2011, pp. 315-321. doi: 10.4236/pp.2011.24040.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. D. Clarke and L. Sokoloff, “Circulation and energy metabolism of the brain,” In: G. Siegel, B. Agranoff, R.W. Albers, S. Fisher, Ed., Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 6th ed., Lippincott-Raven, Philadelphia, USA, 1999, pp. 637-669.
[2] D. An and B. Rodrigues, “Role of changes in cardiac metabolism in development of diabetic cardiomyopathy,” Am J Physiol Heart Circ Physiol, Vol. 291, No. 4, 2006, pp. H1489-1506.
[3] S. Abdel-Aleem, M. Badr and C. Frangakis, “Stimulation of fatty acid oxidation in myocytes by phosphodiesterase inhibitors and adenosine analogues,” Life Sci, Vol. 48, No. 18, 1991, pp. PL97-102.
[4] S. Abdel-Aleem, M. K. El Awadi, W. A. Zarouk, D. Taylor and J. E. Lowe, “Effects of phosphodiesterase inhibitors on glucose utilization in isolated cardiac myocytes,” Mol Cell Biochem, Vol. 180, No. 1-2, 1998, pp. 129-135.
[5] P. J. Randle, P. B. Garland, C. N. Hales and E. A. Newsholme, “The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus,” Lancet, Vol. 1, No. 7285, 1963, pp. 785- 789.
[6] Y. Kimura, T. Tani, T. Kanbe and K. Watanabe, “Effect of cilostazol on platelet aggregation and experimental thrombosis,” Arzneimittelforschung, Vol. 35, No. 7A, 1985, pp. 1144-1149.
[7] F. Gotoh, H. Tohgi, S. Hirai, A. Terashi, Y. Fukuuchi, E. Otomo, Y. Shinohara, E. Itoh, T. Masuda, T. Sawada, T. Yamaguchi, K. Nishimaru and Y. Ohashi, “Cilostazol stroke prevention study: a placebo-controlled double-blind trial for secondary prevention of cerebral infarction,” J Stroke Cerebrovasc Dis, Vol. 9, 2000, pp. 147- 157.
[8] Y. Huang, Y. Cheng, J. Wu, Y. Li, E. Xu, Z. Hong, Z. Li, W. Zhang, M. Ding, X. Gao, D. Fan, J. Zeng, K. Wong, C. Lu, J. Xiao and C. Yao, ”Cilostazol as an alternative to aspirin after ischaemic stroke: a randomised, double-blind, pilot study,” Lancet Neurol, Vol. 7, No. 6, 2008, pp. 494-499.
[9] Y. Shinohara, Y. Katayama, S. Uchiyama, T. Yamaguchi, S. Handa, K. Matsuoka, Y. Ohashi, N. Tanahashi, H. Yamamoto, C. Genka, Y. Kitagawa, H. Kusuoka, K. Nishimaru, M. Tsushima, Y. Koretsune, T. Sawada and C. Hamada, “Cilostazol for prevention of secondary stroke (CSPS 2): an aspirin-controlled, double-blind, randomised non-inferiority trial,” Lancet Neurol, Vol. 9, No. 10, , 2010, pp. 959-968.
[10] J. M. Choi, H. K. Shin, K. Y. Kim, J. H. Lee and K. W. Hong, “Neuroprotective effect of cilostazol against focal cerebral ischemia via antiapoptotic action in rats,” J Pharmacol Exp Ther, Vol. 300, No. 3, 2002, pp. 787-793.
[11] Y. L. Ye, W. Z. Shi, W. P. Zhang, M. L. Wang, Y. Zhou, S. H. Fang, L. Y. Liu, Q. Zhang, Y. P. Yu and E. Q. Wei, “Cilostazol, a phosphodiesterase 3 inhibitor, protects mice against acute and late ischemic brain injuries,” Eur J Pharmacol, Vol. 557, No. 1, 2007, pp. 23-31.
[12] K. W. Hong, J. H. Lee, K. Y. Kima, S. Y. Park and W. S. Lee, “Cilostazol: therapeutic potential against focal cerebral ischemic damage,” Curr Pharm Des, Vol. 12, No. 5, 2006, pp. 565-573.
[13] M. J. Kim, J. H. Lee, S. Y. Park, K. W. Hong, C. D. Kim, K. Y. Kim and W. S. Lee, “Protection from apoptotic cell death by cilostazol, phosphodiesterase type III inhibitor, via cAMP-dependent protein kinase activation,” Pharmacol Res, Vol. 54, No. 4, 2006, pp. 261-267.
[14] J. H. Lee, S. Y. Park, H. K. Shin, C. D. Kim, W. S. Lee and K. W. Hong, “Protective effects of cilostazol against transient focal cerebral ischemia and chronic cerebral hypoperfusion injury,” CNS Neurosci Ther, Vol. 14, No. 2, 2008, pp. 143-152.
[15] A. Y. Abramov, A. Scorziello and M. R. Duchen, “'Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation,” J Neurosci, Vol. 27, No. 5, 2007, pp. 1129-1138.
[16] S. Takahashi, B. F. Driscoll, M. J. Law and L. Sokoloff, “Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia,” Proc Natl Acad Sci U S A, Vol. 92, No. 10, 1995, pp. 4616-4620.
[17] Y. Y. Huang, K. C. Martin and E. R. Kandel, “Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation,” J Neurosci, Vol. 20, No. 17, 2000, pp. 6317-6325.
[18] T. Abe, S. Takahashi and N. Suzuki, “Oxidative metabolism in cultured rat astroglia: effects of reducing the glucose concentration in the culture medium and of D-aspartate or potassium stimulation,” J Cereb Blood Flow Metab, Vol. 26, No. 2, 2006, pp. 153-160.
[19] P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson and D. C. Klenk, “ Measurement of protein using bicinchoninic acid,” Anal Biochem, Vol. 150, No. 1, 1985, pp. 76-85.
[20] A. Gomes, E. Fernandes and J. L. Lima, “Fluorescence probes used for detection of reactive oxygen species,” J Biochem Biophys Methods, Vol. 65, No. 2-3, 2005, pp. 45-80.
[21] H. Shindo, M. Tawata and T. Onaya, “Cyclic adenosine 3’,5’-monophosphate enhances sodium, potassium- adenosine triphosphatase activity in the sciatic nerve of streptozotocin-induced diabetic rats,” Endocrinology, Vol. 132, No. 2, 1993, pp. 510-516.
[22] K. Naka, H. Sasaki, Y. Kishi, M. Furuta, T. Sanke, K. Nanjo and M. Mukoyama, “Effects of cilostazol on development of experimental diabetic neuropathy: functional and structural studies, and Na+ -K+ -ATPase acidity in peripheral nerve in rats with streptozotocin-induced diabetes,” Diabetes Res Clin Pract, Vol. 30, No. 3, pp. 153-162.
[23] L. Pellerin, A. K. Bouzier-Sore, A. Aubert, S. Serres, M. Merle, R. Costalat and P. J. Magistretti, “Activity-de- pendent regulation of energy metabolism by astrocytes: an update,” Glia, Vol. 55, No. 12, 2007, pp. 1251-1262.
[24] L. Pellerin and P. J. Magistretti, “Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization,” Proc Natl Acad Sci U S A, Vol. 91, No. 22, 1994, pp. 10625- 10629.
[25] M. E. Gibbs, B. S. O'Dowd, E. Hertz and L. Hertz, “Astrocytic energy metabolism consolidates memory in young chicks,” Neuroscience, Vol. 141, No. 1, 2006, pp. 9-13.
[26] M. E. Gibbs, D. Hutchinson and L. Hertz, “Astrocytic involvement in learning and memory consolidation,” Neurosci Biobehav Rev, Vol. 32, No. 5, 2008, pp. 927- 944.
[27] M. S. Patel and L. G. Korotchkina, “Regulation of mammalian pyruvate dehydrogenase complex by phosphorylation: complexity of multiple phosphorylation sites and kinases,” Exp Mol Med, Vol. 33, No. 4, 2001, pp. 191- 197.
[28] M. S. Patel and L. G. Korotchkina, “Regulation of the pyruvate dehydrogenase complex,” Biochem Soc Trans, Vol. 34, No. Pt 2, 2006, pp. 217-222.
[29] M. C. Sugden and M. J. Holness, “Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs,” Am J Physiol Endocrinol Metab, Vol. 284, No. 5, 2003, pp. E855-862.
[30] A. Reynolds, C. Laurie, R. L. Mosley and H. E. Gendelman, “Oxidative stress and the pathogenesis of neurodegenerative disorders,” Int Rev Neurobiol, Vol. 82, 2007, pp. 297-325.
[31] N. Koike, T. Takamura and S. Kaneko, “Induction of reactive oxygen species from isolated rat glomeruli by protein kinase C activation and TNF-alpha stimulation, and effects of a phosphodiesterase inhibitor,” Life Sci, Vol. 80, No. 18, 2007, pp. 1721-1728.
[32] S. Raha, A. T. Myint, L. Johnstone and B. H. Robinson, “Control of oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase,” Free Radic Biol Med, Vol. 32, No. 5, 2002, pp. 421-430.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.