Bcr-Abl-mediated Raf kinase inhibitor protein suppression promotes chronic myeloid leukemia progenitor cells proliferation

Abstract

The Ras/Raf-1/MEK/ERK pathway is constitutively activated in Bcr-Abl transformed cells, and Ras activity enhances the oncogenic ability of Bcr-Abl. On the hand, Raf kinase inhibitor protein (RKIP) inhibits activation of MEK by Raf-1 and its downstream signal transduction, resulting in blocking the MAP kinase pathway. Moreover, Raf-1 has been reported to regulate cell cycle progression. However, the mechanism by which Bcr-Abl promotes the cell cycle progression through Raf-1 is not completely understood. In the present study, we found that the expression of RKIP was suppressed in CML cells, and investigated the interaction between RKIP and Bcr-Abl in CML cells. In aldehyde dehydrogenase (ALDH)hi/CD34+ cells derived from CML patients, the inhibition of Bcr-Abl induced RKIP expression and reduced the phosphorylated-FOXM1 (pFOXM1) status, resulting in inhibited colony formation of Bcr-Abl+ progenitor cells. Moreover, overexpression of RKIP significantly decreased the colony numbers, reduced the pFOXM1 status, and reduced pFOXM-1 target genes such as Skp2, Cdc25B and KIS, and induced the expression of p27Kip1a and p21Cip1. Thus, Bcr-Abl represses the expression of RKIP, and continuously activates FOXM1, resulting in the proliferation of CML progenitor cells through the cell cycle modulation.

Share and Cite:

Nakamura, S. , Yagyu, T. , Takemura, T. , Tan, L. , Nagata, Y. , Yokota, D. , Hirano, I. , Shibata, K. , Fujie, M. , Fujisawa, S. and Ohnishi, K. (2011) Bcr-Abl-mediated Raf kinase inhibitor protein suppression promotes chronic myeloid leukemia progenitor cells proliferation. Stem Cell Discovery, 1, 54-66. doi: 10.4236/scd.2011.13006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kurzrock, R., Gutterman, J.U. and Talpaz, M. (1988) The molecular genetics of Philadelphia chromosome-positive leukemias. New England Journal of Medicine, 319, 990-998. doi:10.1056/NEJM198810133191506
[2] Rudkin, C.T., Nowell, P.C. and Hungerford, D.A. (1964) DNA contents of chromosome ph1 and chromosome 21 in human cronic granulocytic leukemia. Science, 144, 1229-1231. doi:10.1126/science.144.3623.1229
[3] Shtivelman, E., Lifshitz, B., Gale, R.P. and Ganaani, E. (1985) Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature, 315, 550-554. doi:10.1038/315550a0
[4] Lugo, T.G., Pendergast, A.M., Muller, A.J. and Witte, O.N. (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science, 247, 1079-1082. doi:10.1126/science.2408149
[5] Daley, G.Q., Van, Etten, R.A. and Baltimore, D. (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science, 247, 824-830. doi:10.1126/science.2406902
[6] Sawyers, C.L., McLaughlin, J. and Witte, O.N. (1995) Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene. Journal of Experimental Medicine, 181, 307-313.doi:10.1084/jem.181.1.307
[7] Skorski, T., Bellacosa, A., Nieborowska-Skorska, M., Majewski, M., Martinez, R., Choi, J.K., Trotta, R., Wlodarski, P., Perrotti, D., Chan, T.O., Wasik, M.A., Tsichlis, P.N. and Calabretta, B. (1997) Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO Journal, 16, 6151-6161.doi:10.1093/emboj/16.20.6151
[8] Carlesso, N., Frank, D.A. and Griffin, J.D. (1996) Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. Journal of Experimental Medicine, 183, 811-820. doi:10.1084/jem.183.3.811
[9] Reuther, J.Y., Reuther, G.W., Cortez, D., Pendergast, A.M. and Baldwin Jr., A.S. (1998) A requirement for NF- kappa B activation in Bcr-Abl-mediated transformation. Genes and Development, 12, 968-981. doi:10.1101/gad.12.7.968
[10] Nottage, M. and Siu, L.L. (2002) Rationale for Ras and raf-kinase as a target for cancer therapeutics. Current Pharmaceutical Design, 8, 2231-2241. doi:10.2174/1381612023393107
[11] O’Neill, E. and Kolch, W. (2004) Conferring specificity on the ubiquitous Raf/MEK signalling pathway. British Journal of Cancer, 90, 283-288. doi:10.1038/sj.bjc.6601488
[12] Ren, R. (2005) Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nature Reviews Cancer, 5, 172-183.doi:10.1038/nrc1567
[13] Pendergast, A.M., Quilliam, L.A., Cripe, L.D., Bassing, C.H., Dai, Z., Li, N., Batzer, A., Rabun, K.M., Der, C.J. and Schlessinger, J. (1993) BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell, 75, 175-185.
[14] Chang, F., Steelman, L.S., Lee, J.T., Shelton, J.G., Navolanic, P.M., Blalock, W.L., Franklin, R.A. and McCubrey, J.A. (2003) Signal transduction mediated by the Ras/Raf/ MEK/ERK pathway from cytokine receptors to transcription factors: Potential targeting for therapeutic intervention. Leukemia, 17, 1263-1293. doi:10.1038/sj.leu.2402945
[15] Sattler, M., Mohi, M.G., Pride, Y.B., Quinnan, L.R., Malouf, N.A., Podar, K., Gesbert, F., Iwasaki, H., Li, S., Van Etten, R.A., Gu, H., Griffin, J.D. and Neel, B.G. (2002) Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell, 1, 479-492. doi:10.1016/S1535-6108(02)00074-0
[16] Aichberger, K.J., Mayerhofer, M., Krauth, M.T., Skvara, H., Florian, S., Sonneck, K., Akgul, C., Derdak, S., Pickl, W. F., Wacheck, V., Selzer, E., Monia, B.P., Moriggl, R., Valent, P. and Sillaber, C. (2005) Identification of mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): Evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood, 105, 3303-3311. doi:10.1182/blood-2004-02-0749
[17] Hindley, A. and Kolch, W. (2002) Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. Journal of Cell Science, 115, 1575-1581.
[18] Serre, L., Pereira, de Jesus, K., Zelwer, C., Bureaud, N., Schoentgen, F. and Benedetti, H. (2001) Crystal structures of YBHB and YBCL from Escherichia coli, two bacterial homologues to a Raf kinase inhibitor protein. Journal of Molecular Biology, 310, 617-634. doi:10.1006/jmbi.2001.4784
[19] Yeung, K., Seitz, T., Li, S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Katsanakis, K.D., Rose, D.W., Mischak, H., Sedivy, J.M. and Kolch, W. (1999) Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature, 401, 173-177. doi:10.1038/43686
[20] Yeung, K., Janosch, P., McFerran, B., Rose, D.W., Mischak, H., Sedivy, J. M. and Kolch, W. (2000) Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the Raf kinase inhibitor protein. Molecular Cell Biology, 20, 3079-3085. doi:10.1128/MCB.20.9.3079-3085.2000
[21] Fu, Z., Smith, P.C., Zhang, L., Rubin, M.A., Dunn, R.L., Yao, Z. and Keller, E.T. (2003) Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. Journal of the National Cancer Institute, 95, 878-889. doi:10.1093/jnci/95.12.878
[22] Schuierer, M.M., Bataille, F., Hagan, S., Kolch, W. and Bosserhoff, A.K. (2004) Reduction in Raf kinase inhibitor protein expression is associated with increased Ras-extracellular signal-regulated kinase signaling in melanoma cell lines. Cancer Research, 64, 5186-5192. doi:10.1158/0008-5472.CAN-03-3861
[23] Schuierer, M.M., Bataille, F., Weiss, T., Hellerbrand, C. and Bosserhoff, A.K. (2006) Raf kinase inhibitor protein is downregulated in hepatocellular carcinoma. Oncology Reports, 16, 451-456.
[24] Hagan, S., Al-Mulla, F., Mallon, E., Oien, K., Ferrier, R., Gusterson, B., García, J.J. and Kolch, W. (2005) Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clinical Cancer Research, 11, 7392-7397. doi:10.1158/1078-0432.CCR-05-0283
[25] Al-Mulla, F., Hagan, S., Behbehani, A.I., Bitar, M.S., George, S.S., Going, J.J., García, J.J., Scott, L., Fyfe, N., Murray, G.I. and Kolch, W. (2006) Raf kinase inhibitor protein expression in a survival analysis of colorectal cancer patients. Journal of Clinical Oncology, 24, 5672-5679. doi:10.1200/JCO.2006.07.5499
[26] Zlobec, I., Baker, K., Minoo, P., Jass, J.R., Terracciano, L. and Lugli, A. (2008) Node-negative colorectal cancer at high risk of distant metastasis identified by combined analysis of lymph node status, vascular invasion, and Raf-1 kinase inhibitor protein exoression. Clinical Cancer Research, 14, 143-148. doi:10.1158/1078-0432.CCR-07-1380
[27] Houben, R., Vetter-Kauczok, C.S., Ortmann, S., Rapp, U.R., Broecker, E.B. and Becker, J.C. (2008) Phospho-ERK staining is a poor indicator of the mutational status of BRAF and NRAS in human melanoma. Journal of Investigative Dermatology, 128, 2003-2012. doi:10.1038/jid.2008.30
[28] Nakamura, S., Hirano, I., Okinaka, K., Takemura, T., Yokota, D., Ono, T., Shigeno, K., Shibata, K., Fujisawa, S. and Ohnishi, K. (2010) The FOXM1 transcriptional factor promotes the proliferation of leukemia cells through modulation of cell cycle progression in acute myeloid leukemia. Carcinogenesis, 31, 2012-2021. doi:10.1093/carcin/bgq185
[29] Wellbrock, C., Karasarides, M. and Marais, R. (2004) The RAF proteins take centre stage. Nature Reviews Molecular Cell Biology, 5, 875-885. doi:10.1038/nrm1498
[30] Dhillon, A.S., Hagan, S., Rath, O. and Kolch, W. (2007) MAP kinase signaling pathways in cancer. Oncogene, 26, 3279-3290. doi:10.1038/sj.onc.1210421
[31] Roberts, P.J. and Der, C.J. (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 26, 3291-3310. doi:10.1038/sj.onc.1210422
[32] Schubbert, S., Shannon, K. and Bollag, G. (2007) Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer, 7, 295-308. doi:10.1038/nrc2109
[33] Li, H.Z., Gao, Y., Zhao, L.X., Liu, Y.X., Sun, B. C., Yang, J. and Yao, Z. (2009) Effects of Raf kinase inhibitor protein expression on metastasis and progression of human breast cancer. Molecular Cancer Research, 7, 832-840. doi:10.1158/1541-7786.MCR-08-0403
[34] Ye, H., Holterman, A.X., Yoo, K.W., Franks, R.R. and Costa, R.H. (1999) Premature expression of the winged helix transcription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S-phase. Molecular Cell Biology, 19, 8570-8580.
[35] Laoukili, J., Kooistra, M.R., Bras, A., Kauw, J., Kerkhoven, R.M., Morrison, A., Clevers, H. and Medema, R.H. (2005) FoxM1 is required for execution of the mitotic programme and chromosome stability. Nature Cell Biology, 7, 126-136. doi:10.1038/ncb1217
[36] Wonsey, D.R. and Follettie, M.T. (2005) Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Research, 65, 5181-5189. doi:10.1158/0008-5472.CAN-04-4059
[37] Leung, T.W., Lin, S.S., Tsang, A.C., Tong, C.S., Ching, J.C., Leung, W.Y, Gimlich, R., Wong, G.G. and Yao, K.M. (2001) Over-expression of FoxM1 stimulates cyclin B1 expression. FEBS Letters, 507, 59-66. doi:10.1016/S0014-5793(01)02915-5
[38] Wang, X., Kiyokawa, H., Dennewitz, M.B. and Costa, R.H. (2002) The forkhead box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proceedings of the National Academy Science of the USA, 99, 16881-16886. doi:10.1073/pnas.252570299
[39] Petrovic, V., Costa, R.H., Lau, L.F., Raychaudhuri, P. and Tyner, A.L. (2008) FoxM1 regulates growth factor induced expression of the KIS kinase to promote cell cycle progression. Journal of Biological Chemistry, 104, 453-460.
[40] Teh, M.T., Wong, S.T., Neill, G.W., Ghali, L.R., Philpott, M.P. and Quinn, A.G. (2002) FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Research, 62, 4773-4780.
[41] Kalinichenko, V.V., Major, M.L., Wang, X., Petrovic, V., Kuechle, J., Yoder, H.M., Dennewitz, M.B., Shin, B., Datta, A., Raychaudhuri, P. and Costa, R.H. (2004) Fox-m1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Development, 18, 830-850. doi:10.1101/gad.1200704

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.