Lineage restriction of adult human olfactory-derived progenitors to dopaminergic neurons
Meng Wang, Chengliang Lu, Hong Li, Mengsheng Qiu, Welby Winstead, Fred Roisen
.
DOI: 10.4236/scd.2011.13004   PDF    HTML     4,568 Downloads   10,345 Views   Citations

Abstract

Human adult olfactory epithelium contains neural progenitors (hONPs) which replace damaged cellular components throughout life. Methods to isolate and expand the hONPs which form neurospheres in vitro have been developed in our laboratory. In response to morphogens, the hONPs differentiate along several neural lineages. This study optimized conditions for the differentiation of hONPs towards dopaminergic neurons. The hONPs were treated with Sonic hedgehog (Shh), in the presence or absence of retinoic acid (RA) and/or forskolin (FN). Transcription factors (nurr1, pitx3 and lmx1a) that promote embryonic mouse or chicken dopaminergic development were employed to determine if they would modulate lineage restriction of these adult human progenitors. Four expression vectors (pIRES-pitx3-nurr1, pLN-CX2-pitx3, pLNCX2-nurr1 and pLNCX2-lmx1a) were transfected into the hONPs, respectively. Transcription factor expression and the rate-limiting enzyme in dopamine synthesis tyrosine hydroxylase (TH) were detected in the transfected cells after 4 month-selection with G418, indicating transfected hONPs were stably restricted towards a dopaminergic lineage. Furthermore, a dopamine enzyme immunoassay (EIA) was employed to detect the synthesis and release of dopamine. The most efficient transfection paradigm was determined. Several neurotrophic factors were detected in the pre-transfected hONPs which have potential roles in the maintenance, survival and proliferation of dopaminergic neurons. Therefore the effect of transfection on the neurotrophin synthesis was examined. Transfection did not alter synthesis. The use of olfactory progenitors as a cell-based therapy for Parkinson’s disease (PD) would allow harvest without invasive surgery, provide an autologous cell population, eliminate need for immunosuppression and avoid the ethical concerns associated with embryonic tissues. This study suggests that specific transcription factors and treatment with morphogens can restrict human adult olfactory-derived progenitors to a dopaminergic neuronal lineage. Future studies will evaluate the utility of these unique cells in cell-replacement paradigms for the treatment of PD like animal models.

Share and Cite:

Wang, M. , Lu, C. , Li, H. , Qiu, M. , Winstead, W. and Roisen, F. (2011) Lineage restriction of adult human olfactory-derived progenitors to dopaminergic neurons. Stem Cell Discovery, 1, 29-43. doi: 10.4236/scd.2011.13004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] National Parkinson Founfdation (2010). http://www.parkinson.org
[2] Anderson, L. and Caldwell, M.A. (2007) Human neural progenitor cell transplants into the subthalamic nucleus lead to functional recovery in a rat model of Parkinson’s disease. Neurobiology of Disease, 27, 133-140. doi:10.1016/j.nbd.2007.03.015
[3] De Lau, L.M. and Breteler, M.M. (2006) Epidemiology of Parkinson’s disease. Lancet Neurology, 5, 525-535. doi:10.1016/S1474-4422(06)70471-9
[4] Hornykiewicz, O. (1973) Parkinson’s disease: From brain homogenate to treatment. Fed Proc, 32, 183-190.
[5] Bidet-Ildei, C., Pollak, P., Kandel, S., Fraix, V. and Orliaguet, J.P. (2011) Handwriting in patients with Parkinson disease: Effect of l-dopa and stimulation of the subthalamic nucleus on motor anticipation. Human Movement Science, 30, 783-791.
[6] Hornykiewicz, O. (1973) Dopamine in the basal ganglia. Its role and therapeutic implications (including the clinical use of L-DOPA). British Medical Buletin, 29, 172-178.
[7] Callaway, E. (2011) Gene therapy offers hope for Parkinson’s disease. Nature, Published online 17 March 2011.
[8] Lang, A.E. and Lozano, A.M. (1998) Parkinson’s disease. First of two parts. New England Journal of Medicine, 339, 1044-1053. doi:10.1056/NEJM199810083391506
[9] Sheng, D., Qu, D., Kwok, K.H., Ng, S.S., Lim, A.Y., Aw, S.S., Lee, C.W., Sung, W.K., Tan, E.K., Lufkin, T., et al. (2010) Deletion of the WD40 domain of LRRK2 in Zebrafish causes Parkinsonism-like loss of neurons and locomotive defect. PLoS Genetics, 6, e1000914. doi:10.1371/journal.pgen.1000914
[10] Marshall, C.T., Lu, C., Winstead, W., Zhang, X., Xiao, M., Harding, G., Klueber, K.M. and Roisen, F.J. (2006) The therapeutic potential of human olfactory-derived stem cells. Histology and Histopathology, 21, 633-643.
[11] Parish, C.L., Castelo-Branco, G., Rawal, N., Tonnesen, J., Sorensen, A.T., Salto, C., Kokaia, M., Lindvall, O. and Arenas, E. (2008) Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. Journal of Clinical Investigation, 118, 149-160. doi:10.1172/JCI32273
[12] Redmond, D.E., Jr., Bjugstad, K.B., Teng, Y.D., Ourednik, V., Ourednik, J., Wakeman, D.R., Parsons, X.H., Gonzalez, R., Blanchard, B.C., Kim, S.U., et al. (2007) Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 12175-12180. doi:10.1073/pnas.0704091104
[13] Abdel-Salam, O.M. (2011) Stem cell therapy for alzheimer’s disease. CNS & Neurological Disorders-Drug Targets, 10, 459-485.
[14] Ruff, C.A., Wilcox, J.T. and Fehlings, M.G. (2011) Cell-based transplantation strategies to promote plasticity following spinal cord injury. Experimental Neurology.
[15] Borlongan, C.V. (2000) Transplantation therapy for Parkinson’s disease. Expert Opinion on Investigational Drugs, 9, 2319-2330. doi:10.1517/13543784.9.10.2319
[16] Freeman, T.B., Olanow, C.W., Hauser, R.A., Nauert, G.M., Smith, D.A., Borlongan, C.V., Sanberg, P.R., Holt, D.A., Kordower, J.H., Vingerhoets, F.J., et al. (1995) Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Annals of neurology, 38, 379-388. doi:10.1002/ana.410380307
[17] Lindvall, O., Rehncrona, S., Gustavii, B., Brundin, P., Astedt, B., Widner, H., Lindholm, T., Bjorklund, A., Leenders, K.L., Rothwell, J.C., et al. (1988) Fetal dopamine-rich mesencephalic grafts in Parkinson’s disease. Lancet, 2, 1483-1484. doi:10.1016/S0140-6736(88)90950-6
[18] Lindvall, O., Widner, H., Rehncrona, S., Brundin, P., Odin, P., Gustavii, B., Frackowiak, R., Leenders, K.L., Sawle, G., Rothwell, J.C., et al. (1992) Transplantation of fetal dopamine neurons in Parkinson’s disease: One-year clinical and neurophysiological observations in two patients with putaminal implants. Annals of neurology, 31, 155-165. doi:10.1002/ana.410310206
[19] Madrazo, I., Leon, V., Torres, C., Aguilera, M.C., Varela, G., Alvarez, F., Fraga, A., Drucker-Colin, R., Ostrosky, F., Skurovich, M., et al. (1988) Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. New England Journal of Medicine, 318, 51.
[20] Ganser, C., Papazoglou, A., Just, L. and Nikkhah, G. (2010). Neuroprotective effects of erythropoietin on 6-hydroxy-dopamine-treated ventral mesencephalic dopamine-rich cultures. Experimental Cell Research, 316, 737-746. doi:10.1016/j.yexcr.2010.01.001
[21] Freed, C.R., Greene, P.E., Breeze, R.E., Tsai, W.Y., DuMouchel, W., Kao, R., Dillon, S., Winfield, H., Culver, S., Trojanowski, J.Q., et al. (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. New England Journal of Medicine, 344, 710-719. doi:10.1056/NEJM200103083441002
[22] Olanow, C.W., Goetz, C.G., Kordower, J.H., Stoessl, A.J., Sossi, V., Brin, M.F., Shannon, K.M., Nauert, G.M., Perl, D.P., Godbold, J., et al. (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Annals of Neurology, 54, 403-414. doi:10.1002/ana.10720
[23] Lane, E.L., Bjorklund, A., Dunnett, S.B. and Winkler, C. (2010) Neural grafting in Parkinson’s disease unraveling the mechanisms underlying graft-induced dyskinesia. Progress in Brain Research, 184, 295-309. doi:10.1016/S0079-6123(10)84015-4
[24] Barker, R.A. and Kuan, W.L. (2010) Graft-induced dyskinesias in Parkinson’s disease: What is it all about? Cell Stem Cell, 7, 148-149. doi:10.1016/j.stem.2010.07.003
[25] Mendez, I., Sanchez-Pernaute, R., Cooper, O., Vinuela, A., Ferrari, D., Bjorklund, L., Dagher, A. and Isacson, O. (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain: A Journal of Neurology, 128, 1498-1510.
[26] Daadi, M.M. (2002) Activation and differentiation of endogenous neural stem cell progeny in the rat Parkinson animal model. Methods in Molecular Biology, 198, 265-271.
[27] Doss, M.X., Koehler, C.I., Gissel, C., Hescheler, J. and Sachinidis, A. (2004) Embryonic stem cells: A promising tool for cell replacement therapy. Journal of Cellular and Molecular Medicine, 8, 465-473. doi:10.1111/j.1582-4934.2004.tb00471.x
[28] Lindvall, O., Kokaia, Z. and Martinez-Serrano, A. (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nature Medicine, 10, S42-S50. doi:10.1038/nm1064
[29] Xiong, N., Zhang, Z., Huang, J., Chen, C., Jia, M., Xiong, J., Liu, X., Wang, F., Cao, X., Liang, Z., et al. (2011) VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson’s disease. Gene Therapy, 18, 394-402. doi:10.1038/gt.2010.152
[30] Hwang, D.Y., Kim, D.S. and Kim, D.W. (2010) Human ES and iPS cells as cell sources for the treatment of Parkinson’s disease: Current state and problems. Journal of Cellular Biochemistry, 109, 292-301.
[31] Snyder, B.J. and Olanow, C.W. (2005) Stem cell treatment for Parkinson’s disease: An update for 2005. Current Opinion in Neurology, 18, 376-385. doi:10.1097/01.wco.0000174298.27765.91
[32] Sonntag, K.C., Simantov, R. and Isacson, O. (2005) Stem cells may reshape the prospect of Parkinson’s disease therapy. Molecular Brain Research, 134, 34-51. doi:10.1016/j.molbrainres.2004.09.002
[33] Tonnesen, J., Parish, C.L., Sorensen, A.T., Andersson, A., Lundberg, C., Deisseroth, K., Arenas, E., Lindvall, O. and Kokaia, M. (2011) Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model. PLoS One, 6, e17560. doi:10.1371/journal.pone.0017560
[34] Kim, H.J. (2011) Stem cell potential in Parkinson’s disease and molecular factors for the generation of dopamine neurons. Biochimica et Biophysica Acta, 1812, 1-11.
[35] Brederlau, A., Correia, A.S., Anisimov, S.V., Elmi, M., Paul, G., Roybon, L., Morizane, A., Bergquist, F., Riebe, I., Nannmark, U., et al. (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: Effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells, 24, 1433-1440. doi:10.1634/stemcells.2005-0393
[36] Winstead, W., Marshall, C.T., Lu, C.L., Klueber, K.M. and Roisen, F.J. (2005) Endoscopic biopsy of human olfactory epithelium as a source of progenitor cells. American Journal of Rhinology, 19, 83-90.
[37] Roisen, F.J., Klueber, K.M., Lu, C.L., Hatcher, L.M., Dozier, A., Shields, C.B. and Maguire, S. (2001) Adult human olfactory stem cells. Brain Research, 890, 11-22. doi:10.1016/S0006-8993(00)03016-X
[38] Zhang, X., Cai, J., Klueber, K.M., Guo, Z., Lu, C., Winstead, W.I., Qiu, M. and Roisen, F.J. (2006) Role of transcription factors in motoneuron differentiation of adult human olfactory neuroepithelial-derived progenitors. Stem Cells, 24, 434-442. doi:10.1634/stemcells.2005-0171
[39] Perlmann, T. and Wallen-Mackenzie, A. (2004) Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells. Cell Tissue Research, 318, 45-52. doi:10.1007/s00441-004-0974-7
[40] Maxwell, S.L., Ho, H.Y., Kuehner, E., Zhao, S. and Li, M. (2005) Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Developmental Biology, 282, 467-479. doi:10.1016/j.ydbio.2005.03.028
[41] Courtois, E.T., Castillo, C.G., Seiz, E.G., Ramos, M., Bueno, C., Liste, I. and Martinez-Serrano, A. (2010) In vitro and in vivo enhanced generation of human A9 dopamine neurons from neural stem cells by Bcl-XL. Journal of Biological Chemistry, 285, 9881-9897. doi:10.1074/jbc.M109.054312
[42] Andersson, E., Tryggvason, U., Deng, Q., Friling, S., Ale- kseenko, Z., Robert, B., Perlmann, T. and Ericson, J. (2006) Identification of intrinsic determinants of midbrain dopamine neurons. Cell, 124, 393-405. doi:10.1016/j.cell.2005.10.037
[43] Karamohamed, S., Latourelle, J.C., Racette, B.A., Perlmutter, J.S., Wooten, G.F., Lew, M., Klein, C., Shill, H., Golbe, L.I., Mark, M.H., et al. (2005) BDNF genetic variants are associated with onset age of familial Parkinson disease: GenePD Study. Neurology, 65, 1823-1825. doi:10.1212/01.wnl.0000187075.81589.fd
[44] Singh, S., Ahmad, R., Mathur, D., Sagar, R.K., and Krishana, B. (2006). Neuroprotective effect of BDNF in young and aged 6-OHDA treated rat model of Parkinson disease. Indian Journal of Experimental Biology, 44, 699-704.
[45] Edalat, H., Hajebrahimi, Z., Movahedin, M., Tavallaei, M., Amiri, S. and Mowla, S.J. (2011) P75NTR suppression in rat bone marrow stromal stem cells significantly reduced their rate of apoptosis during neural differentiation. Neuroscience Letters, 498, 9-15. doi:10.1016/j.neulet.2011.04.050
[46] Li, W. and Ding, S. (2010) Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends in Pharmacological Sciences, 31, 36-45. doi:10.1016/j.tips.2009.10.002
[47] Pessach, I.M. and Notarangelo, L.D. (2011) Gene therapy for primary immunodeficiencies: Looking ahead, toward gene correction. Journal of Allergy and Clinical Immunology, 127, 998-1005. doi:10.1016/j.jaci.2011.02.027
[48] Kassis, I., Vaknin-Dembinsky, A. and Karussis, D. (2011) Bone marrow mesenchymal stem cells: Agents of immunomodulation and neuroprotection. Current Stem Cell Research & Therapy, 6, 63-68. doi:10.2174/157488811794480762
[49] Lindvall, O. and Kokaia, Z. (2010) Stem cells in human neurodegenerative disorders-time for clinical translation? Journal of Clinical Investigation, 120, 29-40. doi:10.1172/JCI40543
[50] Zhang, J., Geula, C., Lu, C., Koziel, H., Hatcher, L.M. and Roisen, F.J. (2003) Neurotrophins regulate proliferation and survival of two microglial cell lines in vitro. Experimental Neurology, 183, 469-481. doi:10.1016/S0014-4886(03)00222-X
[51] Zhang, X.D., Guo, Z.F., Liu, N. and Roisen, F.J. (2000) Effects of bFGF and BDNF on the cells of injured adult mouse olfactory epithelium in vitro. Sheng Li Xue Bao, 52, 193-198.
[52] Zhang, X., Klueber, K.M., Guo, Z., Lu, C. and Roisen, F.J. (2004) Adult human olfactory neural progenitors cultured in defined medium. Experimental Neurology, 186, 112-123. doi:10.1016/j.expneurol.2003.10.022
[53] Zhang, X., Klueber, K.M., Guo, Z., Cai, J., Lu, C., Winstead, W.I., Qiu, M. and Roisen, F.J. (2006) Induction of neuronal differentiation of adult human olfactory neuroepithelial-derived progenitors. Brain Research, 1073-1074, 109-119. doi:10.1016/j.brainres.2005.12.059
[54] Fitzpatrick, K.M., Raschke, J. and Emborg, M.E. (2009) Cell-based therapies for Parkinson’s disease: Past, present, and future. Antioxidants and Redox Signaling, 11, 2189- 2208. doi:10.1089/ars.2009.2654
[55] Yang, J.R., Liao, C.H., Pang, C.Y., Huang, L.L., Lin, Y.T., Chen, Y.L., Shiue, Y.L. and Chen, L.R. (2010) Directed differentiation into neural lineages and therapeutic potential of porcine embryonic stem cells in rat Parkinson’s disease model. Cell Reprogramming, 12, 447-461.
[56] Arenas, E. (2010) Towards stem cell replacement therapies for Parkinson’s disease. Biochemical and Biophysical Research Communications, 396, 152-156. doi:10.1016/j.bbrc.2010.04.037
[57] Tatard, V.M., Sindji, L., Branton, J.G., Aubert-Pouessel, A., Colleau, J., Benoit, J.P. and Montero-Menei, C.N. (2007) Pharmacologically active microcarriers releasing glial cell line-derived neurotrophic factor: Survival and differentiation of embryonic dopaminergic neurons after grafting in hemiparkinsonian rats. Biomaterials, 28, 1978-1988. doi:10.1016/j.biomaterials.2006.12.021
[58] Blandini, F., Cova, L., Armentero, M.T., Zennaro, E., Levandis, G., Bossolasco, P., Calzarossa, C., Mellone, M., Giuseppe, B., Deliliers, G.L., et al. (2010) Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxydopamine neurotoxicity in the rat. Cell Transplantation, 19, 203-217. doi:10.3727/096368909X479839
[59] Brundin, P., Barker, R.A. and Parmar, M. (2010) Neural grafting in Parkinson’s disease Problems and possibilities. Progress in Brain Research, 184, 265-294. doi:10.1016/S0079-6123(10)84014-2
[60] Torp, R., Singh, P.B., Sorensen, D.R., Dietrichs, E. and Hirschberg, H. (2006) Growth factors as neuroprotective treatment in Parkinson disease? Tidsskr Nor Laegeforen, 126, 899-901.
[61] Hess, D.C. and Borlongan, C.V. (2008) Stem cells and neurological diseases. Cell Proliferation, 41, 94-114. doi:10.1111/j.1365-2184.2008.00486.x
[62] Bao, X., Wei, J., Feng, M., Lu, S., Li, G., Dou, W., Ma, W., Ma, S., An, Y., Qin, C., et al. (2011) Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Research, 1367, 103-113. doi:10.1016/j.brainres.2010.10.063
[63] Cazorla, P., Smidt, M.P., O’Malley, K.L. and Burbach, J.P. (2000) A response element for the homeodomain transcription factor Ptx3 in the tyrosine hydroxylase gene promoter. Journal of Neurochemistry, 74, 1829-1837. doi:10.1046/j.1471-4159.2000.0741829.x
[64] Reddy, S.D., Rayala, S.K., Ohshiro, K., Pakala, S.B., Kobori, N., Dash, P., Yun, S., Qin, J., O’Malley, B.W. and Kumar, R. (2011) Multiple coregulatory control of tyrosine hydroxylase gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 108, 4200-4205. doi:10.1073/pnas.1101193108
[65] Haubenberger, D., Reinthaler, E., Mueller, J.C., Pirker, W., Katzenschlager, R., Froehlich, R., Bruecke, T., Daniel, G., Auff, E. and Zimprich, A. (2011) Association of transcription factor polymorphisms PITX3 and EN1 with Parkinson’s disease. Neurobiology of Aging, 32, 302-307. doi:10.1016/j.neurobiolaging.2009.02.015
[66] Lebel, M., Gauthier, Y., Moreau, A. and Drouin, J. (2001). Pitx3 activates mouse tyrosine hydroxylase promoter via a high-affinity binding site. Journal of Neurochemistry, 77, 558-567. doi:10.1046/j.1471-4159.2001.00257.x
[67] Martinat, C., Bacci, J.J., Leete, T., Kim, J., Vanti, W.B., Newman, A.H., Cha, J.H., Gether, U., Wang, H. and Abeliovich, A. (2006) Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proceedings of the National Academy of Sciences of the United States of America, 103, 2874-2879. doi:10.1073/pnas.0511153103
[68] Hwang, D.Y., Ardayfio, P., Kang, U.J., Semina, E.V. and Kim, K.S. (2003) Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Molecular Brain Research, 114, 123-131. doi:10.1016/S0169-328X(03)00162-1
[69] Liu, S., Tian, Z., Yin, F., Zhao, Q. and Fan, M. (2009) Generation of dopaminergic neurons from human fetal mesencephalic progenitors after co-culture with striatal-conditioned media and exposure to lowered oxygen. Brain Research Bulletin, 80, 62-68. doi:10.1016/j.brainresbull.2009.05.007
[70] Smidt, M.P., van Schaick, H.S., Lanctot, C., Tremblay, J.J., Cox, J.J., van der Kleij, A.A., Wolterink, G., Drouin, J. and Burbach, J.P. (1997) A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 94, 13305-13310. doi:10.1073/pnas.94.24.13305
[71] Saucedo-Cardenas, O., Kardon, R., Ediger, T.R., Lydon, J.P. and Conneely, O.M. (1997) Cloning and structural organization of the gene encoding the murine nuclear receptor transcription factor, NURR1. Gene, 187, 135-139. doi:10.1016/S0378-1119(96)00736-6
[72] Smits, S.M., Ponnio, T., Conneely, O.M., Burbach, J.P. and Smidt, M.P. (2003) Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. European Journal of Neuroscience, 18, 1731-1738. doi:10.1046/j.1460-9568.2003.02885.x
[73] Winner, B. (2008) The impact of Nurr1 to antagonizes neurotoxicity of activated microglia in Parkinson’s disease (PD) model. Neuroscience, Program #832.17/L3.
[74] Simeone, A. (2005) Genetic control of dopaminergic neuron differentiation. Trends Neuroscience, 28, 62-65. doi:10.1016/j.tins.2004.11.007
[75] Krasnova, I.N., Ladenheim, B., Hodges, A.B., Volkow, N. D. and Cadet, J.L. (2011) Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain. PLoS One, 6, e19-179.
[76] Katunar, M.R., Saez, T., Brusco, A. and Antonelli, M.C. (2010) Ontogenetic expression of dopamine-related transcription factors and tyrosine hydroxylase in prenatally stressed rats. Neurotoxicity Research, 18, 69-81. doi:10.1007/s12640-009-9132-z
[77] Vazin, T., Becker, K.G., Chen, J., Spivak, C. E., Lupica, C.R., Zhang, Y., Worden, L. and Freed, W.J. (2009) A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation from human embryonic stem cells. PLoS One, 4, e6606. doi:10.1371/journal.pone.0006606
[78] Messmer, K., Remington, M.P., Skidmore, F. and Fishman, P.S. (2007) Induction of tyrosine hydroxylase expression by the transcription factor Pitx3. International Journal of Developmental Neuroscience, 25, 29-37. doi:10.1016/j.ijdevneu.2006.11.003
[79] Nunes, I., Tovmasian, L.T., Silva, R.M., Burke, R.E., and Goff, S.P. (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 100, 4245-4250. doi:10.1073/pnas.0230529100
[80] Zetterstrom, R.H., Solomin, L., Jansson, L., Hoffer, B.J., Olson, L. and Perlmann, T. (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science, 276, 248-250. doi:10.1126/science.276.5310.248
[81] Jacobs, F.M., van Erp, S., van der Linden, A.J., von Oerthel, L., Burbach, J.P. and Smidt, M.P. (2009) Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development, 136, 531-540. doi:10.1242/dev.029769
[82] Zhang, X., Cai, J., Klueber, K.M., Guo, Z., Lu, C., Qiu, M. and Roisen, F.J. (2005) Induction of oligodendrocytes from adult human olfactory epithelial-derived progenitors by transcription factors. Stem Cells, 23, 442-453. doi:10.1634/stemcells.2004-0274
[83] Ericson, J., Rashbass, P., Schedl, A., Brenner-Morton, S., Kawakami, A., van Heyningen, V., Jessell, T.M. and Briscoe, J. (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell, 90, 169-180. doi:10.1016/S0092-8674(00)80323-2
[84] Novitch, B.G., Wichterle, H., Jessell, T.M. and Sockanathan, S. (2003) A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron, 40, 81-95. doi:10.1016/j.neuron.2003.08.006
[85] Roisen, F.J., Murphy, R.A. and Braden, W.G. (1972) Dibutyryl cyclic adenosine monophosphate stimulation of colcemid-inhibited axonal elongation. Science, 177, 809-811. doi:10.1126/science.177.4051.809
[86] Roisen, F.J., Murphy, R.A., Pichichero, M.E. and Braden, W.G. (1972) Cyclic adenosine monophosphate stimulation of axonal elongation. Science, 175, 73-74. doi:10.1126/science.175.4017.73
[87] Kurauchi, Y., Hisatsune, A., Isohama, Y., Sawa, T., Akaike, T., Shudo, K. and Katsuki, H. (2011) Midbrain dopaminergic neurons utilize nitric oxide/cyclic GMP signaling to recruit ERK that links retinoic acid receptor stimulation to up-regulation of BDNF. Journal of Neurochemistry, 116, 323-333. doi:10.1111/j.1471-4159.2010.06916.x
[88] Trzaska, K.A. and Rameshwar, P. (2011) Dopaminergic neuronal differentiation protocol for human mesenchymal stem cells. Methods in Molecular Biology, 698, 295-303. doi:10.1007/978-1-60761-999-4_22
[89] Wichterle, H., Lieberam, I., Porter, J.A. and Jessell, T.M. (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell, 110, 385-397. doi:10.1016/S0092-8674(02)00835-8
[90] Ko, J.Y., Lee, H.S., Park, C.H., Koh, H.C., Lee, Y.S. and Lee, S.H. (2009) Conditions for tumor-free and dopamine neuron-enriched grafts after transplanting human ES cell-derived neural precursor cells. Molecular Therapy, 17, 1761-1770. doi:10.1038/mt.2009.148
[91] Bibel, M., Richter, J., Schrenk, K., Tucker, K.L., Staiger, V., Korte, M., Goetz, M. and Barde, Y.A. (2004) Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nature Neuroscience, 7, 1003-1009. doi:10.1038/nn1301
[92] Moliner, A., Enfors, P., Ibanez, C.F. and Andang, M. (2008) Mouse embryonic stem cell-derived spheres with distinct neurogenic potentials. Stem Cells and Development, 17, 233-244. doi:10.1089/scd.2007.0211
[93] Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E. and Gage, F.H. (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 16659-16664. doi:10.1073/pnas.0407643101
[94] Cooper, O., Hargus, G., Deleidi, M., Blak, A., Osborn, T., Marlow, E., Lee, K., Levy, A., Perez-Torres, E., Yow, A., et al. (2010) Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Molecular and Cellular Neuroscience, 45, 258-266. doi:10.1016/j.mcn.2010.06.017
[95] Canon, E., Cosgaya, J.M., Scsucova, S. and Aranda, A. (2004) Rapid effects of retinoic acid on CREB and ERK phosphorylation in neuronal cells. Molecular Biology of the Cell, 15, 5583-5592. doi:10.1091/mbc.E04-05-0439
[96] Fathi, F., Altiraihi, T., Mowla, S.J. and Movahedin, M. (2010) Transplantation of retinoic acid treated murine embryonic stem cells & behavioural deficit in Parkinsonian rats. Indian Journal of Medical Research, 131, 536-544.
[97] Hanson, M. G., Shen, S., Wiemelt, A.P., McMorris, F.A. and Barres, B.A. (1998) Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro. Journal of Neuroscience, 18, 7361-7371.
[98] Kobayashi, K., Umeda-Yano, S., Yamamori, H., Takeda, M., Suzuki, H. and Hashimoto, R. (2011) Correlated alterations in serotonergic and dopaminergic modulations at the hippocampal mossy fiber synapse in mice lacking dysbindin. PLoS One, 6, e18113. doi:10.1371/journal.pone.0018113
[99] Echelard, Y., Epstein, D.J., St-Jacques, B., Shen, L., Mohler, J., McMahon, J.A. and McMahon, A.P. (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell, 75, 1417-1430. doi:10.1016/0092-8674(93)90627-3
[100] Maden, M. (2002) Retinoid signalling in the development of the central nervous system. Nature Reviews Neuroscience, 3, 843-853. doi:10.1038/nrn963
[101] Gehlert, D.R. (1986) Regional modulation of [3H] forskolin binding in the rat brain by guanylyl-5’-imidodiphosphate and sodium fluoride: Comparison with the distribution of guanine nucleotide binding sites. The Journal of pharmacology and experimental therapeutics, 239, 952-958.
[102] Yoneyama, M., Kawada, K., Shiba, T. and Ogita, K. (2011) Endogenous nitric oxide generation linked to ryanodine receptors activates cyclic GMP/protein kinase G pathway for cell proliferation of neural stem/progenitor cells derived from embryonic hippocampus. Journal of Pharmacological Sciences, 115, 182-195. doi:10.1254/jphs.10290FP
[103] Maia, J., Santos, T., Aday, S., Agasse, F., Cortes, L., Malva, J.O., Bernardino, L. and Ferreira, L. (2011) Controlling the neuronal differentiation of stem cells by the intracellular delivery of retinoic acid-loaded nanoparticles. ACS Nano, 5, 97-106. doi:10.1021/nn101724r
[104] Braun, A.A., Herring, N.R., Schaefer, T.L., Hemmerle, A.M., Dickerson, J.W., Seroogy, K.B., Vorhees, C.V. and Williams, M.T. (2011) Neurotoxic (+)– methamphetamine treatment in rats increases brain-derived neurotrophic factor and tropomyosin receptor kinase B expression in multiple brain regions. Neuroscience, 184, 164-171.
[105] He, B.C., Chen, L., Zuo, G.W., Zhang, W., Bi, Y., Huang, J., Wang, Y., Jiang, W., Luo, Q., Shi, Q., et al. (2010) Synergistic antitumor effect of the activated PPARgamma and retinoid receptors on human osteosarcoma. Clinical Cancer Research, 16, 2235-2245. doi:10.1158/1078-0432.CCR-09-2499
[106] Sadan, O., Bahat-Stromza, M., Barhum, Y., Levy, Y.S., Pisnevsky, A., Peretz, H., Ilan, A.B., Bulvik, S., Shemesh, N., Krepel, D., et al. (2009) Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease. Stem Cells and Development, 18, 1179-1190. doi:10.1089/scd.2008.0411
[107] Fu, Q., Song, X.F., Liao, G.L., Deng, C.L. and Cui, L. (2010) Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology, 75, 718-723. doi:10.1016/j.urology.2009.10.003
[108] von Bohlen und Halbach, O. and Unsicker, K. (2009) Neurotrophic support of midbrain dopaminergic neurons. Advances in Experimental Medicine and Biology, 651, 73-80. doi:10.1007/978-1-4419-0322-8_7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.