Introducing the Mixed Distribution in Fitting Rainfall Data
Jamaludin Suhaila, Kong Ching-Yee, Yusof Fadhilah, Foo Hui-Mean
DOI: 10.4236/ojmh.2011.12002   PDF    HTML     6,878 Downloads   18,053 Views   Citations


Several types of mixed distribution are proposed and tested in order to determine the best model in describing daily rainfall amount in Peninsular Malaysia for the time period of 33 years. A mixed distribution is a mixture of discrete and continuous daily rainfall which included the dry days. The mixed distributions tested in this study were exponential distribution, gamma distribution, weibull distribution and lognormal distribution. The model will be selected based on the Akaike Information Criterion (AIC). In general, the mixed lognormal distribution has been selected as the best model for most of the rain gauge stations in Peninsular Malaysia. However, these results are greatly influenced by the topographical, geographical and climatic changes of the rain gauge stations.

Share and Cite:

J. Suhaila, K. Ching-Yee, Y. Fadhilah and F. Hui-Mean, "Introducing the Mixed Distribution in Fitting Rainfall Data," Open Journal of Modern Hydrology, Vol. 1 No. 2, 2011, pp. 11-22. doi: 10.4236/ojmh.2011.12002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] V. P. Singh, “On Application of the Weibull Distribution in Hydrology,” Water Resources Management, Vol. 1, No. 1, 1987, pp. 33-43. doi:10.1007/BF00421796
[2] R. T. Clarke, “Estimating Trends in Data from the Weibull and a Generalized Extreme Value Distribution,” Water Resources Research, Vol. 38, No. 6, 2002, 1089. doi:10.1029/2001WR000575
[3] P. K. Bhunya, R. Berndtsson, C. S. P. Ojha and S. K. Mishra, “Suitability of Gamma, Chi-Square, Weibull, and Beta distributions as Syn-thetic Unit Hydrographs,” Journal of Hydrology, Vol. 334, No. 1-2, 2007, pp. 28-38. doi:10.1016/j.jhydrol.2006.09.022
[4] P. K. Swamee, “Near Lognormal Distribution,” Journal of Hydrologic Engineering, Vol. 7, No. 6, 2002, pp. 441-444. doi:10.1061/(ASCE)1084-0699(2002)7:6(441)
[5] T. G. Chapman, “Stochastic Models for Daily Rainfall in the Western Pacific,” Mathematics and Computers in Simulation, Vol. 43, No. 3-6, 1997, pp. 351-358. doi:10.1016/S0378-4754(97)00019-0
[6] S. Deni, A. Jemain and K. Ibrahim, “Fitting Optimum Order of Markov Chain Models for Daily Rainfall Occur- Rences in Peninsular Malay-sia,” Theoretical and Applied Climatology, Vol. 97, No. 1, 2009, pp. 109-121. doi:10.1007/s00704-008-0051-3
[7] R. D. Stern and R. Coe, “A Model Fitting Analysis of Daily Rainfall Data,” Journal of the Royal Statistical So- ciety. Series A (General), Vol. 147, No. 1, 1984, pp. 1-34. doi:10.2307/2981736
[8] N. T. Ison, A. M. Feyerherm and L. Dean Bark, “Wet Period Precipitation and the Gamma Distribution,” Journal of Applied Meteorology, Vol. 10, No. 4, 1971, pp. 658-665. doi:10.1175/1520-0450(1971)010<0658:WPPATG>2.0.CO;2
[9] T. A. Buishand, “Some Remarks on the Use of Daily Rain-Fall Models,” Journal of Hydrology, Vol. 36, No. 3-4, 1978, pp. 295-308. doi:10.1016/0022-1694(78)90150-6
[10] W. May, “Variabil-ity and Extremes of Daily Rainfall during the Indian Summer Monsoon in the Period 1901-1989,” Global and Planetary Change, Vol. 44, No. 1-4, 2004, pp. 83-105. doi:10.1016/j.gloplacha.2004.06.007
[11] H. K. Cho, K. P. Bowman and G. R. North, “A Com- parison of Gamma and Lognormal Distributions for Characterizing Satellite Rain Rates from the Tropical Rainfall Measuring Mission,” Journal of Applied Mete- orology, Vol. 43, No. 11, 2004, pp. 1586-1597. doi:10.1175/JAM2165.1
[12] S. R. Bhakar, A. K. Bansal, N. Chhajed and R. C. Purohit, “Frequency Analysis of Consecu-tive Days Maximum Rain-Fall at Banswara, Rajasthan, India,” ARPN Journal of Engineering and Applied Sciences, Vol. 1, No. 3, 2006, pp. 64-67.
[13] D. A. Mooley, “Gamma Distri-bution Probability Model for Asian Summer Monsoon Monthly Rainfall,” Monthly Weather Review, Vol. 101, No. 2, 1973, pp. 160-176. doi:10.1175/1520-0493(1973)101<0160:GDPMFA>2.3.CO;2
[14] H. Aksoy, “Use of Gamma Distribution in Hydrological Analysis,” Turkish Journal of Engineering and Environmental Sciences, Vol. 24, No. 6, 2000, pp. 419-428.
[15] Y. Fadhilah, M. Zalina, V. T. V. Nguyen, S. Suhaila and Y. Zulkifli, “Fitting the Best-Fit Distribution for the Hourly Rainfall Amount in the Wilayah Persekutuan,” Jurnal Teknologi, Vol. 46, No. C, 2007, pp. 49-58.
[16] J. Suhaila and A. A. Jemain, “Fitting Daily Rainfall Amount in Malaysia Using the Normal Transform Dis- tribution,” Journal of Applied Sciences, Vol. 7, No. 14, 2007, pp. 1800-1886.
[17] J. Suhaila and A. A. Jemain, “Fitting Daily Rainfall Amount in Peninsular Malaysia Using Several Types of Exponential Distributions,” Journal of Applied Sci-ences Research, Vol. 3, No. 10, 2007, pp. 1027-1036.
[18] J. Suhaila and A. A. Jemain, “Fitting the Statistical Distribution for Daily Rainfall in Peninsular Malaysia Based on AIC Crite-rion,” Journal of Applied Sciences Research, Vol. 4, No. 12, 2008, pp. 1846-1857.
[19] E. Ha and C. Yoo, “Use of Mixed Bivariate Distributions for Deriving Inter-Station Correlation Coefficients of Rain Rate,” Hydrological Processes, Vol. 21, No. 22, 2007, pp. 3078-3086. doi:10.1002/hyp.6526
[20] J. B. Wijngaard, A. M. G. K. Tank and G. P. K. Nnen, “Homogene-ity of 20th Century European Daily Temperature and Precipita-tion Series,” International Journal of Climatology, Vol. 23, No. 6, 2003, pp. 679-692. doi:10.1002/joc.906
[21] B. Kedem, L. S. Chiu and G. R. North, “Estimation of Mean Rain Rate Application to Satellite Observations,” Journal of Geophysical Research, Vol. 95, No. D2, 1990, pp. 1965-1972. doi:10.1029/JD095iD02p01965
[22] H. Qiao and C. P. Tsokos, “Parameter Estimation of the Weibull Probability Distribution,” Mathematics and Computers in Simulation, Vol. 37, No. 1, 1994, pp. 47-55. doi:10.1016/0378-4754(94)90058-2
[23] R. P. McDonald, “An Index of Goodness-of-Fit Based on Noncentrality,” Jour-nal of Classification, Vol. 6, No. 1, 1989, pp. 97-103. doi:10.1007/BF01908590
[24] F. M. Mutua, “The Use of the Akaike Information Crite- rion in the Identification of an Op-timum Flood Frequency Model,” Hydrological Sciences Jour-nal, Vol. 39, No. 3, 1994, pp. 235-244. doi:10.1080/02626669409492740
[25] B. K. Tan, “Urban Geology of Kuala Lumpur and Ipoh, Malaysia,” International Association of Engineering Ge- ology (IAEG2006), The Geo-logical Society of London, London, 2006, pp. 1-7.
[26] C. E. Vincent, T. D. Davies and A. K. C. Beresford, “Recent Changes in the Level of Lake Naivasha, Kenya, As an Indicator of Equatorial Westerlies over East Africa,” Climatic Change, Vol. 2, No. 2, 1979, pp. 175-189. doi:10.1007/BF00133223
[27] W. L. Dale, “The Rainfall of Malaya, Part II,” Journal of Tropical Geography, Vol. 14, 1960, pp.11-28.
[28] Z. A. Roslan and A. H. Zulkifli, “'ROM Scale for Fore- casting Erosion Induced Landslide Risk on Hilly Ter- rain,” In: Kyoji Sassa, Ed., Landslides: Risk Analysis and Sus-tainable Disaster Management: Proceedings of the Fist Gen-eral Assembly of the International Consortium on Landslides, Part 3, International Consortium on Land- slides, Springer, Berlin Heidelberg, 2005, pp. 197-202.
[29] S. Ahmad, M. I. S. Mohd and M. Hashim, “Application of Remote Sensing Tech-niques for Prediction of Land- slide Hazard Areas in Malay-sia,” 14th United Na- tions/International Astronomical Federa-tion Workshop on “Capacity Building in Space Technology for the Bene- fit of Developing Countries,” with an Emphasis on Natu- ral Disaster Management, Vancouver, 2-3 October 2004.
[30] B. K. Tan and W. H. Ting, “Some Case Studies on De-bris Flow in Peninsular Malaysia,” In: H. Liu, A. Deng, and J. Chu, Eds., Geotechnical Engineering for Disaster Miti- gation and Rehabilitation, Springer, Berlin, 2008, pp. 231-235. doi:10.1007/978-3-540-79846-0_20

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.