Silver Nanoparticles: Green Route, Stability and Effect of Additives


Colloidal silver nanoparticles were prepared by reducing silver nitrate with oxalic acid in presence of cetyltrimethylammonium bromide (CTAB). The synthesized silver particles show an intense surface plasmon band in the visible region. The work reported in this paper describes the effect of concentration of various additives (NaCl, NaBr, NaNO3, Na2SO4 and NaH2PO4) and ammonia on the growth and stability of Ag-nanoparticles. In all the cases the rate decreases as the [electrolytes] or [ammonia] increases. The nature, polarizability and coordinating ability of the anions play vital roles for nucleus formation and the growth process, which subsequently form different size particles. Transmission electron microscopy, selected areas electron diffraction, and UV-visible spectroscopy have been employed to characterize Ag-nanoparticles. The effect of the following variables on the particle size and size distribution was investigated: the [oxalic acid], [CTAB] and [Ag+].The nanoparticles are stable in NaNO3 and NaH2PO4 solutions; but NaCl, NaBr and Na2SO4 causes their aggregation.

Share and Cite:

Z. Khan, J. Hussain, S. Kumar, A. Hashmi and M. Malik, "Silver Nanoparticles: Green Route, Stability and Effect of Additives," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 4, 2011, pp. 390-399. doi: 10.4236/jbnb.2011.24048.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] V. Iliev, D. Tomova, L. Bilyarska, A. Eliyas and L. Petrov, “Photocatalytic Properties of TiO2 Modified with Platinum and Silver Nanoparticles in the Degradation of Oxalic Acid in Aqueous Solution,” Applied Catalysis B: Environmental, Vol. 63, No. 3-4, 2006, pp. 266-271. doi:10.1016/j.apcatb.2005.10.014
[2] V. Iliev, D. Tomova, L. Bilyarska and G. Tyuliev, “In-fluence of the Size of Gold Nanoparticles Deposited on TiO2 upon the Photocatalytic Destruction of Oxalic Acid,” Journal of Molecular Catalysis A: Chemical, Vol. 263, No. 1-2, 2007, pp. 32-38. doi:10.1016/j.molcata.2006.08.019
[3] V. Iliev, D. Tomova, S. Rakovsky, A. Eliyas and G. Li Puma, “Enhancement of Photocatalytic Oxidation of Oxalic Acid by Gold Modified WO3/TiO2 Photocatalysts under UV and Visible Light Irradiation,” Journal of Mo-lecular Catalysis A: Chemical, Vol. 327, No. 1-2, 2010, pp. 51-57. doi:10.1016/j.molcata.2010.05.012
[4] S. Song, J. Tu, L. Xu, X. Xu, Z. He, J. Qiu, J. Ni and J. Chen, “Preparation of a Titanium Dioxide Photocatalyst Codoped with Cerium and Iodine and Its Performance in the Degradation of Oxalic Acid,” Chemosphere, Vol. 73, No. 9, 2008, pp. 1401-1406. doi:10.1016/j.chemosphere.2008.08.032
[5] S. Navaladian, B. Viswanathan, R. P. Viswanath and T. K. Varadarajan, “Thermal Decomposition as Route for Silver Nanoparticles,” Nanoscale Research Letters, Vol. 2, No. 1, 2007, 44-48. doi:10.1007/s11671-006-9028-2
[6] S. Navaladian, B. Viswanathan, T. K. Varadarajan and R. P. Viswanath, “Microwave-Assisted Rapid Synthesis of Anisotropic Ag Nanoparticles by Solid State Transforma-tion,” Nanotechnology, Vol, 19, 2008, pp. 45603- 45609. doi:10.1088/0957-4484/19/04/045603
[7] M. Itoh, T. Kakuta, M. Nagaok, Y. Koyama, M. Saka-moto, S. Kawasaki, N. Umeda and M. Kurihara, “Direct Transformation into Silver Nanoparticles via Thermal Decomposition of Oxalate-Bridging Silver Oleylamine Complexes,” Journal for Nanoscience and Nanotechnol-ogy, Vol. 9, No. 11, 2009, pp. 6655-6660. doi:10.1166/jnn.2009.1324
[8] V. K. Sharma, R. A. Yngard and Y. Lin, “Silver Nano- particles: Green Synthesis and Their Antimicrobial Ac-tivities,” Journal of Colloid and Interface Science, Vol. 145, No. 1-2, 2009, pp. 83-96. doi:10.1016/j.cis.2008.09.002
[9] F. Zaera, A. J. Gellman and G. A. Somorjai, “Surface Science Studies of Catalysis: Classification of Reactions,” Accounts of Chemical Research, Vol. 19, No. 1, 1986, pp. 24-31. doi:10.1021/ar00121a004
[10] J. H. Fendler, “Atomic and Molecular Clusters in Mem-brane Mimetic Chemistry,” Chemical Reviews, Vol. 87, No. 5, 1987, pp. 877-899. doi:10.1021/cr00081a002
[11] L. N. Lewis, “Chemical Catalysis by Colloids and Clus-ters,” Chemical Reviews, Vol. 93, No. 8, 1993, pp. 2693- 2730. doi:10.1021/cr00024a006
[12] T. Pal, T. K. Sau and N. R. Jana, “Reversible Formation and Dissolution of Silver Nanoparticles in Aqueous Sur-factant Media,” Langmuir, Vo. 13, No. 6, 1997, pp. 1481-1485. doi:10.1021/la960834o
[13] M. S. Bakshi, F. Possmayer and N. O. Petersen, “Role of Different Phospholipids in the Synthesis of Pearl-Necklace-Type Gold-Silver Bimetallic Nanoparticles as Bioconjugate Materials,” Journal of Physical Chemistry C, Vol. 111, No. 38, 2007, pp. 14113-14124. doi:10.1021/jp072862t
[14] P. Khullar, A. Mahal, V. Singh, T. S. Banipal, G. Kaur and M. S. Bakshi, “How PEO-PPO-PEO Triblock Poly-mer Micelles Control the Synthesis of Gold Nanoparticles: Temperature and Hydrophobic Effects,” Langmuir, Vol, 26, No. 13, 2010, pp. 11363-11371. doi:10.1021/la100734p
[15] P. Ball, “When Size Does Matter,” Nature, Vol. 349, No. 6305, 1991, p. 101. doi:10.1038/349101a0
[16] X. Tian, W. Wang and G. Cao, “A Facile Aqueous-Phase Route for the Synthesis of Silver Nanoplates,” Materials Letters, Vol. 61, No. 1, 2007, pp. 130-133. doi:10.1016/j.matlet.2006.04.021
[17] M. P. Pileni, “Reverse Micelles as Microreactors,” Journal of Physical Chemistry, Vol. 97, No. 27, 1993, pp. 6961-6973. doi:10.1021/j100129a008
[18] D. E. Tembe and M. M. Sharma, “Factors Controlling the Stability of Colloid-Stabilized Emulsions: I. An Experi-mental Investigation,” Journal of Colloid and Interface Science, Vol. 157, No. 1, 1993, pp. 244-253. doi:10.1006/jcis.1993.1182
[19] X. Zhai and S. Efrima, “Chemical and Physical Aspects of Macroemulsions Stabilized by Interfacial Colloids,” Journal of Physical Chemistry, Vol. 100, No. 26, 1996, pp. 11019-11028. doi:10.1021/jp953171c
[20] S. De, A. Pal, N. R. Jana and T. Pal, “Anion Effect in Linear Silver Nanoparticle Aggregation as Evidenced by Efficient Fluorescence Quenching and SERS Enhance-ment,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 131, No. 1, 2000, pp. 111-123. doi:10.1016/S1010-6030(99)00231-2
[21] P. Mulvaney and A. Henglein, “Long-Lived Nonmetallic Silver Clusters in Aqueous Solution: A Pulse Radiolysis Study of Their Formation,” Journal of Physical Chemistry, Vol. 94, No. 10, 1990, pp. 4182-4188. doi:10.1021/j100373a056
[22] T. Linnert, P. Mulvaney and A. Henglein, “Surface Che-mistry of Colloidal Silver: Surface Plasmon Damping by Chemisorbed Iodide, Hydrosulfide (SH-), and Phenylthi-olate,” Journal of Physical Chemistry, Vol. 97, No. 3, 1993, pp. 679-682. doi:10.1021/j100105a024
[23] A. Henglein, “Physicochemical Properties of Small Metal Particles in Solution: "Microelectrode" Reactions, Che-misorption, Composite Metal Particles, and the Atom-to- Metal Transition,” Journal of Physical Chemistry, Vol. 97, No. 21, 1993, pp. 5457-5471. doi:10.1021/j100123a004
[24] F. Strelow and A. Henglein, “Time Resolved Chemisorp-tion of I- and SH- on Colloidal Silver Particles (A Stopped Flow Study),” Journal of Physical Chemistry, Vol. 99, No. 31, 1995, pp. 11834-11838. doi:10.1021/j100031a008
[25] A. Hanglein, “Colloidal Silver Nanoparticles: Photo-chemical Preparation and Interaction with O2, CCl4, and Some Metal Ions,” Chemistry of Materials, Vol. 10, No. 1, 1998, pp. 444-450. doi:10.1021/cm970613j
[26] E. Janata, A. Henglein and B. G. Ershov, “First Clusters of Ag+ Ion Reduction in Aqueous Solution,” Journal of Physical Chemistry, Vol. 98, No. 42, 1994, pp. 10888- 10890. doi:10.1021/j100093a033
[27] D. Yu and V. W. W. Yam, “Hydrothermal-Induced As-sembly of Colloidal Silver Spheres into Various Nano- particles on the Basis of HTAB-Modified Silver Mirror Reaction,” Journal of Physical Chemistry B, Vol. 109, No. 12, 2005, pp. 5497-5503. doi:10.1021/jp0448346
[28] A. T. Le, P.T. Huy, P. D. Tam, T. Q. Huy, P. D. Cam, A. A. Kudrinskiy and Y. A. Krutyakov, “Green Synthesis of Finely-Dispersed Highly Bactericidal Silver Nanoparticles via Modified Tollens Technique,” Current Applied Physics, Vol. 10, No. 3, 2010, pp. 910-916. doi:10.1016/j.cap.2009.10.021
[29] A. G. Ingalls, “Amateur Telescope Making (Book one),” Scientific American Ind., New York, 1981, p. 101.
[30] S. Huang and A. W. H. Mau, “Selective Growth of Ali- gned Carbon Nanotubes on a Silver-Patterned Substrate by the Silver Mirror Reaction,” Journal of Physical Chemistry B, Vol. 107, No. 15, 2003, pp. 3455-3458. doi:10.1021/jp034282b
[31] P. Mukherjee and K .J. Mysels, “Critical Micelle Con-centrations of Aqueous Surfactants, NSRDS-NBS # 36,” Superintendent of Documents, Washington, DC, 1971.
[32] Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong and A. Gedanken, “The Surface Chemistry of Au Colloids and Their Interactions with Functional Amino Acids,” Journal of Physical Chemistry B, Vol. 108, No. 13, 2004, pp. 4046-4052. doi:10.1021/jp037056a
[33] Z. Khan, P. Kumar, Kabir-ud-Din, “Kinetics and Me-chanism of the Reduction of Colloidal Manganese Dioxide by D-Fructose,” Colloids and Surfaces A: Physico-chemical and Engineering Aspects, Vol. 248, No. 1-3, 2004, pp. 25-31. doi:10.1016/j.colsurfa.2004.08.020
[34] R. Bacaloglu, C. A. Bunton and F. Ortega, “Micellar Enhancements of Rates of SN2 Reactions of Halide Ions: The Effect of Head Group Size," Journal of Physical Chemistry, Vol. 93, No. 4, 1989, pp. 1497-1502. doi:10.1021/j100341a061
[35] C. Tondre and M. Hebrant, “Micellar and Microemulsion Systems to Perform Heterogeneous Reactions, Biphasic Extraction and Solute Transport,” Journal of Molecular Liquids, Vol. 72, No. 1-3, 1997, pp. 279-294. doi:10.1016/S0167-7322(97)00042-1
[36] A. Henglein, “Colloidal Silver Nanoparticles: Photo-chemical Preparation and Interaction with O2, CCl4, and Some Metal Ions,” Chemistry of Materials, Vol. 10, No. 1, 1998, pp. 444-450. doi:10.1021/cm970613j
[37] Z. Y. Huang, G. Mills and B. “Hajek, Spontaneous For-mation of Silver Particles in Basic 2-Propanol,” Journal of Physical Chemistry, Vol. 97, No. 44, 1993, pp. 11542- 11550. doi:10.1021/j100146a031
[38] A. Rafey, K. B. L. Shrivastav, S. A. Iqbal and Z. Khan, “Growth of Ag-nanoparticles Using Aspartic Acid in Aqueous Solutions,” Journal of Colloid and Interface Science, Vol. 534, No. 3, 2011, pp. 190- 195. doi:10.1016/j.jcis.2010.10.046
[39] S. Tascioglu, “Micellar Solutions as Reaction Media,” Tetrahedron, Vol. 52, No. 34, 1996, pp. 11113-11152. doi:10.1016/0040-4020(96)00669-2
[40] Kabir-ud-Din, J. K. J. Salem, S. Kumar and Z. khan, “The Micelle-Induced Interaction between Ninhydrin and Tryptophan,” Journal of Colloid and Interface Science, Vol. 215, No. 1, 1999, pp. 9-15. doi:10.1006/jcis.1999.6211
[41] H. A. Al-Lohedan, C. A. Bunton and L. S. Romsted, “Micellar Effects upon the Reaction of Betaine Esters with Hydroxide Ion,” Journal of Physical Chemistry, Vol. 85, No. 14, 1981, pp. 2123-2129. doi:10.1021/j150614a034
[42] C. A. Bunton and J. R. Moffatt, “Micellar Effects upon Substitutions by Nucleophilic Anions,” Journal of Phys-ical Chemistry, Vol. 92, No. 10, 1988, pp. 2896-2902. doi:10.1021/j100321a038
[43] D. Longa, G. Wua and S. Chen, “Preparation of Oligo-chitosan Stabilized Silver Nanoparticles by Gamma Ir-radiation,” Radiation Physics and Chemistry, Vol. 76, No. 7, 2007, pp. 1126-1131. doi:10.1016/j.radphyschem.2006.11.001
[44] R. A. Alvarez-Puebla, E. Arceo, P. J .G. Goulet, J. J. Garrido and R. F. Aroca, “Role of Nanoparticle Surface Charge in Surface-Enhanced Raman Scattering,” Journal of Physical Chemistry B, Vol. 109, No. 9, 2005, pp. 3787-3792. doi:10.1021/jp045015o
[45] H. A. Al-Lohedan, C. A. Bunton and J. R. Moffatt, “Quantitative Treatment of Micellar Effects upon the Nucleophilicity of Halide Ions,” Journal of Physical Chemistry, Vol. 87, No. 2, 1983, pp. 332-335. doi:10.1021/j100225a033
[46] H. A. Al-Lohedan, “Nucleophilicity of Halide Ions in the Micellar Pseudophase,” Tetrahedron, Vol. 45, No. 6, 1987, pp. 1747-1754. doi:10.1016/S0040-4020(01)80038-7
[47] Y. Sato, J. J. Wang, D. N. Batchelder and D. A. Smith, “Simple Chemical Method for Forming Silver Surfaces with Controlled Grain Sizes for Surface Plasmon Expe-riments,” Langmuir, Vol. 19, No. 17, 2003, pp. 6857-6861. doi:10.1021/la0301240
[48] L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Ve-cerova, R. Prucek, M. Holecova and R. Zboril, “Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs),” Journal of Phys-ical Chemistry C, Vol. 112, No. 15, 2008, pp. 5825-5834. doi:10.1021/jp711616v
[49] J. Soukupova, L. Kvitek, A. Panacek, T. Nevecna and R. Zboril, “Comprehensive study on Surfactant Role on Sil-ver Nanoparticles (NPs) Prepared via Modified Tollens Process,” Materials Chemistry and Physics, Vol. 111, No. 1, 2008, pp. 77-81. doi:10.1016/j.matchemphys.2008.03.018
[50] D. V. Goia and E. Matijevic, “Preparation of Monodis-persed Metal Partials,” New Journal of Chemistry, Vol. 22, No. 11, 1998, pp. 1203-1215. doi:10.1039/a709236i
[51] A. Henglein, “Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Sem-iconductor Particles,” Chemical Reviews, Vol. 89, No. 8, 1989, pp. 1861-1873. doi:10.1021/cr00098a010
[52] M. Nishizawa, Y. Sasaki and K. Saito, “Kinetics and Mechanisms of the Outer-Sphere Oxidation of Cis- Aquaoxovanadium(IV) Complexes Containing Quadrin-dentate Amino Polycarboxylates. Interpretation of the Difference in Activation Parameters with the Charge Type of Reactants,” Inorganic Chemistry, Vol. 24, No. 5, 1985, pp. 767-772. doi:10.1021/ic00199a028
[53] W. Wang, X. Chen and S. Efrima, “Silver Nanoparticles Capped by Long-Chain Unsaturated Carboxylates,” Journal of Physical Chemistry B, Vol. 103, No. 34, 1999, pp. 7238-7246. doi:10.1021/jp991101q
[54] M. G. Guzman, J. Dille and S. Godet, “Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity,” World Academy of Science, Engineering and Technology, Vol. 43, 2008, pp. 357-364.
[55] A. Serra, E. Filippo, M. Re, M. Palmisano, M. Vittori- Antisari, A. Buccolieri and D. Manno, “Non-functionalized Silver Nanoparticles for a Localized Surface Plasmon Resonance-Based Glucose Sensor,” Nanotechnology, Vol. 20, No. 16, 2009, pp. 165501-165508. doi:10.1088/0957-4484/20/16/165501

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.