A Dual Effect of Au-Nanoparticles on Nucleic Acid Cholesteric Liquid-Crystalline Particles


Au-nanoparticles (size about 2 nm, but not 5 or 15 nm) are capable of effectively incorporating into quasinematic layers of particles of cholesteric liquid-crystalline dispersion formed by double-stranded nucleic acid molecules of various families (DNA and poly(I)xpoly(C)). This Au-size-dependent process is accompanied by a decrease in amplitudes of abnormal bands in the CD spectra specific to initial cholesteric liquid-crystalline dispersions and simultaneously by an appearance of plasmon resonance band in visible absorption spectrum. The study of properties of particles of cholesteric liquid-crystalline dispersion treated with Au-nanoparticles by means of various physico-chemical methods demonstrates that incorporation of Au-nanoparticles into quasinematic layers of these particles results in two effects: i) it facilitates reorganization of the spatial cholesteric structure of particles, and ii) it induces the formation of Au-clusters in the content of particles. It is not excluded that these effects represent a possible reason for genotoxicity of Au-nanopar- ticles.

Share and Cite:

Y. Yevdokimov, S. Skuridin, V. Salyanov, V. Popenko, V. Rudoy, O. Dement′eva and E. Shtykova, "A Dual Effect of Au-Nanoparticles on Nucleic Acid Cholesteric Liquid-Crystalline Particles," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 4, 2011, pp. 461-471. doi: 10.4236/jbnb.2011.24056.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. Kang, M. A.Mackey, M.A.El-Sayed, “Nuclear target- ing of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis”, Jour- nal of the American Chemical Society, Vol. 132, 2010, pp. 1517-1519.
[2] V. Wiwanitkit, A. Sereemaspun, R. Rojanathanes, “Effect of gold nanoparticles on spermatozoa: the first world re- port”, Fertility & Sterility, Vol. 91, 2009, e7-e8.
[3] S. T. Zakhidov, T. L. Marshak, E. A. Malolina, A. Yu. Kulibin, I. A. Zelenina, S. M. Pavlyuchenkova, V. M. Rudoy, O. V. Dement’eva, S. G. Skuridin, Yu. M. Yev- dokimov, “Gold nanoparticles impair nuclear chromatin decondensation process in murine sperm cells in vitro”, Biologicheskie membrany (Russian edition), Vol. 27, 2010, pp. 349-353.
[4] Y. P. Liu, W. Meyer-Zaika, S. Franzka, G. Schmid, M. Tsoli, H. Kuhn, “Gold-cluster degradation by transition of B-DNA into A-DNA and formation of nanowires”, Angewandte Chemie International Edition, Vol. 42, 2003, pp. 2853-2857.
[5] M. Tsoli, H. Kuhn, W. Brandau, H. Esche, G. Schmid, “Cellular uptake and toxicity of Au55 clusters”, Small, Vol. 1, 2005, pp. 841-844.
[6] Y. Pan, S. Neuss , A. Leifert, M. Fischer, F. Wen, U. Si- mon, G. Schmid, W. Brandau, W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles”, Small, vol. 3, 2007, pp. 1941-1949.
[7] E. Boisselier, D. Astruc, “Gold nanoparticles in nanome- dicine: preparations, imaging, diagnostics, therapies and toxicity”, Chemical Society Reviews, Vol. 38, 2009, pp. 1759-1782.
[8] X-D. Zhang, M-L. Guo, H-Y. Wu, Y-Q. Ding, X. Feng, L-A. Zhang, “Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy”, International Journal of Nanomedicine, Vol. 4, 2009, pp. 165-173.
[9] Y. Jin, M. Wu, X. Zhao, “Toxicity of nanomaterials to living cells”, Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Vol. 1, Chapter 6: Bio Nano Materials, 2005, pp. 274-277.
[10] J. Ai, E. Biazar, M. Jafarpour, M. Montazeri, A. Majdi, S. Aminifard, M. Zafari, H. R. Akbari, H. G. Rad , “Nanotoxicology and nanoparticle safety in biomedical designs”, International Journal of Nanomedicine, Vol. 6, 2011, pp. 1117-1127.
[11] Yu. M. Yevdokimov, V. I. Salyanov, S. V. Semenov, S. G. Skuridin, “DNA Liquid-Crystalline Dispersions and Nanostructures”, In: Yu. M. Yevdokimov, Ed., CRC Press, Taylor & Francis group, Boca Raton, London, N-Y., 2011, 320 p.
[12] F. Livolant, A. Leforestier, “Condensed phases of DNA: Structures and phase transitions”, Progress in Polymer Science, Vol. 21, 1996, pp.1115-1164.
[13] Yu. M. Yevdokimov, V. I. Salyanov, S. G. Skuridin, S. V. Semenov, O. N. Kompanets., “The CD spectra of double- stranded DNA liquid-crystalline dispersions”, Nova Sci. Publishers, N-Y., 2011, 103 p.
[14] Yu. M. Yevdokimov, S. G. Skuridin, B. A. Chernuha, “The background for creating biosensors based on nucleic acid molecules”, In: “Advances in Biosensors,” A. P. F. Turner and Yu. M Yevdokimov (eds), Vol. 3., 1995, JAI Press, Greenwich, London, pp. 143-164.
[15] J. Turkevich, P. C. Stevenson, J. Hillier, “A Study of the nucleation and growth processes in the synthesis of colloidal gold”, Discussions of the Faraday Society, Vol. 11, 1951, pp. 55-75.
[16] K. R. Brown, D. G. Walter, M. J. Natan, “Seeding of colloid-dal Au nanoparticle solutions. 2. Improved control of particle size and shape”, Chemistry of Materials, Vol. 12, 2000, pp. 306-313.
[17] D. G. Duff, A. Baiker, P. P. Edwards, “A new hydrosol of gold clusters. 1. Formation and particle size variation”, Langmuir, Vol. 9, 1993, pp. 2301-2309.
[18] H. Zipper, H. Brunner, J. Bernhagen, F. Vitzthum, “In- vestigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and metho- dological implications”, Nucleic Acids Research, Vol. 32, 2004, pp. e103 doi:10.1093/nar/gnh101.
[19] O. N. Kompanets, “Portable optical biosensors for detection of biologically active and toxic compounds”, Uspekhi Fizicheskikh Nauk (Russian edition), Vol. 174, 2004, pp. 686-690.
[20] E. V. Shtykova, V. V. Volkov, V. I. Salyanov, Yu. M. Yevdokimov, “SAXS_data_based structural modeling of DNA-gadolinium complexes fixed in particles of cholesteric liquid-crystalline dispersions”, European Biophysics Journal, Vol. 39, 2010, pp. 1313-1322.
[21] S. G. Skuridin, V. A. Dubinskaya, E. V. Shtykova, V. V. Volkov, V. M. Rudoy, O. V. Dement’eva, V. A. Kuzmin, E. S. Lisitsyna, S. T. Zakhidov, I. A. Zelenina, Yu. M. Yevdokimov, “Retention of gold nanoparticles in the structure of quasienematic layers formed by DNA molecules”, Biologicheskie membrany (Russian edition), Vol. 28, 2011, pp. 191–198.
[22] P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, “PRIMUS: A Windows PC-based system for small-angle scattering data analysis”, Journal of Applied Crystallography, Vol. 36, 2003, pp. 1277–1282.
[23] V. A. Belyakov, V. P. Orlov, S. V. Semenov, S. G. Skuridin S.G., Yu. M. Yevdokimov, “Comparison of calculated and observed CD spectra of liquid crystalline dispersions formed from double-stranded DNA and from DNA complexes with coloured compounds”, Liquid Crystals, Vol. 20, 1996, pp. 777-784.
[24] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, “A DNA-based method for rationally assembling nano- particles into macroscopic materials”, Nature, Vol. 382, 1996, pp. 607-609.
[25] A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, P. Scultz, “Organization of “nanocrystal molecules” using DNA”, Nature, Vol. 382, 1996, pp. 609-611.
[26] A. Kumar, M. Pattarkine, M. Bhadbhade, A. B. Mandale, K. N. Ganesh, S. S. Datar, C. V. Dharmadhikari, M. Sastry, “Linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates”, Advanced Materials, Vol. 13, 2001, pp. 341-344.
[27] M. Sastrya, A. Kumar, S. Datar, C. V. Dharmadhikari, “DNA-mediated electrostatic assembly of gold nanopar- ticles into linear arrays by a simple drop-coating procedure”, Applied Physics Letters, Vol. 78, 2001, pp. 2943- 2945.
[28] M. G. Warner, J. E. Hutchison, “Linear assemblies of na- noparticles electrostatically organized on DNA scaffolds”, Nature Materials, Vol. 2, 2003, pp. 272-277.
[29] L. V. Zherenkova, P. V. Komarov, P. G. Khakatur,” Simulation of the metallization of a fragment of a deoxy- ribonucleic acid molecule with gold nanoparticles”, Col- loid Journal (Russian edition)., Vol. 69, 2007, pp. 753- 765.
[30] S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods”, The Journal of Physical Chemistry B, Vol. 103, 1999, pp. 8410-8426.
[31] S. L. Westcott, S. J. Oldenburg, T. R. Lee, N. J. Halas, “Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions”, Chemical Physics Letters, Vol. 300, 1999, pp. 651-655.
[32] S. Link, M. A. El-Sayed, “Shape and size dependence of radioactive, non radioactive and photothermal properties of gold nanocrystals”, International Reviews in Physical Chemistry, Vol. 19, 2000, pp. 409-453.
[33] K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles”, Nano Letters, Vol. 3, 2003, pp. 1087-1090.
[34] W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles”, Optics Communications, Vol. 220, 2003, pp. 137-141.
[35] P. V. Kamat, “Photophysical, photochemical and photo- catalytic aspects of metal nanoparticles”, The Journal of Physical Chemistry B, Vol. 106, 2002, pp. 7729-7744.
[36] N.G. Khlebtsov, A.G. Melnikov, L A. Dykman., V.A Bogatyrev, “Optical properties and biomedical applica- tions of nanostructures based on gold and silver biocon- jugates. Photopolarimetry in Remote Sensing”, G.Videen, Ya.S. Yatskiv and M. I. Mishchenko (eds.), NATO Sci- ence Series, II. Mathematics, Physics, and Chemistry, Vol. 161, Kluwer, Dordrecht, 2004, pp. 265-308.
[37] L.Dykman, V. Bogatyrev, S. Shchyogolev, N. Khlebtsov, Gold nanoparticles: synthesis, properties, biomedical applications, Nauka, Moscow, 2008, pp. 70-78 (in Ru- ssian).
[38] P. Mulvaney, “Surface plasmon spectroscopy of nano- sized metal particles, Langmuir, 1996, Vol. 12, pp. 788- 800.
[39] G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites”, Science, Vol. 277, 1997, pp. 1232-1237.
[40] Yu. M. Yevdokimov, “From particles of liquid-crystalline dispersions to rigid deoxyribonucleic acid nanoconstruc- tions”, Liquid Crystals Today, Vol. 20, 2011, pp. 2-19.
[41] A. Guinier, G. Fournet, Small-angle scattering of X-rays. John Wiley and Sons, New York, 1955. 269 p.
[42] O.Glatter, O. Kratky, Small-angle X-ray scattering. Acad. Press, London, 1982. 515 p.
[43] L. A. Feigin, D. I. Svergun, Structure analysis by small- angle X-ray and neutron scattering, (1987), Plenum Press, New York
[44] H.D. Mertens, D. I. Svergun, “Structural characterization of proteins and complexes using small-angle X-ray solu- tion scattering”, Journal of Structural Biology, Vol. 172, 2010, pp. 128-141.
[45] D.I. Svergun, A.V. Semenyuk, L.A. Feigin, “Small-an- gle-scattering-data treatment by the regularization me- thod”, Acta Crystallographica, Vol. A44, 1988, pp. 244- 250.
[46] A. Rocha, Y. Zhou, S. Kundu, J. M. Gonzalez, S. B. Vin- son, H. Liang, “In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis”, Journal of Nanobiotechnology, Vol. 9, 2011, doi: 10.1186/1477-3155-9-5.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.