Targeting Divalent Metal Ions at the Active Site of the HIV-1 RNase H Domain: NMR Studies on the Interactions of Divalent Metal Ions with RNase H and Its Inhibitors

DOI: 10.4236/ajac.2011.26073   PDF   HTML     5,065 Downloads   9,019 Views   Citations


HIV-1 reverse transcriptase (RT) RNase H (HIV-RH) is a key target of anti-AIDS drugs. Metal-chelating compounds are an important class of chemicals in pharmacological drug discovery, especially in relation to HIV-RT and the highly-related HIV-integrase. The correlation between the metal-chelating properties and enzyme activities of the metal chelators is always of high scientific interest, as an understanding of this may accelerate the rational optimization of this class of inhibitors. Our NMR data show that Mg2+ and Ca2+ bind specifically to the active site of the RNase H domain and two Mg2+ ions sequentially bind one molecule of RNase H. We also demonstrate here, using saturated and unsaturated tricyclic N-hydroxypyridones designed to block the active site, that the primary binding sites and affinities of divalent metal ions are correlated with the structures of the chelating motifs. Chemical shift perturbation studies of protein/metal-ion/compound ternary complexes also indicate that divalent metal ions play important roles for the specific interaction of the compounds with the RNase H active site.

Share and Cite:

J. Yan, H. Wu, T. Tom, O. Brodsky and K. Maegley, "Targeting Divalent Metal Ions at the Active Site of the HIV-1 RNase H Domain: NMR Studies on the Interactions of Divalent Metal Ions with RNase H and Its Inhibitors," American Journal of Analytical Chemistry, Vol. 2 No. 6, 2011, pp. 639-649. doi: 10.4236/ajac.2011.26073.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. J. Artsa and S. F. Le Grice, “Interaction of Retroviral Reverse Transcriptase with Template-Primer Duplexes during Replication,” Progress in Nucleic Acid Research and Molecular Biology, Vol. 58, 1997, pp. 339-393. doi:10.1016/S0079-6603(08)60041-0
[2] V. Goldschmidt, J. Didierjean, B. Ehresmann, et al., “Mg2+ Dependency of HIV-1 Reverse Transcription, In-hibition by Nucleoside Analogues and Resistance,” Nucleic Acids Research, Vol. 34, No. 1, 2006, pp. 42-52. doi:10.1093/nar/gkj411
[3] M. G?tte, “Inhibition of HIV-1 Reverse Transcription: Basic Principles of Drug Action and Resistance,” Expert Review of Anti-Infective Therapy, Vol. 2, 2004, pp. 707-716. doi:10.1586/14789072.2.5.707
[4] M. G?tte, S. Fackler, T. Hermann, et al., “HIV-1 Reverse Transcriptase-Associated Rnase H Cleaves RNA/RNA in Arrested Complexes: Implications for the Mechanism by Which Rnase H Discriminates between RNA/RNA and RNA/DNA,” EMBO Journal, Vol. 14, No. 4, 1995, pp. 833-841.
[5] S. J. Schultz and J. J. Champoux, “RNase H Activity: Structure, Specificity, and Function in Reverse Transcrip-tion,” Virus Research, Vol. 134, No. 1-2, 2008, pp. 86-103. doi:10.1016/j.virusres.2007.12.007
[6] M. Nowotny and W. Yang, “Stepwise Analyses of Metal Ions in Rnase H Catalysis from Substrate Destabilization to Product Release,” EMBO Journal, Vol. 25, No. 9, 2006, pp. 1924-1933. doi:10.1038/sj.emboj.7601076
[7] W. Yang, J. Y. Lee and M. Nowotny, “Making and Breaking Nucleic Acids: Two-Mg2+-Ion Catalysis and Substrate Specificity,” Molecular Cell, Vol. 22, No. 1, 2006, pp. 5-13. doi:10.1016/j.molcel.2006.03.013
[8] M. Nowotny, S. A. Gaidamakov, R. J. Crouch, et al., “Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Ca-talysis,” Cell, Vol. 121, No. 7, 2005, pp. 1005-1016. doi:10.1016/j.cell.2005.04.024
[9] J. A. Cowan, T. Ohyama, K. Howard, et al., “Metal-Ion Stoichiometry of the HIV-1 RT Ribonuclease H Domain: Evidence for Two Mutually Exclusive Sites Leads to New Mechanistic Insights on Metal-Mediated Hydrolysis in Nucleic Acid Biochemistry,” Journal of Biological In-organic Chemistry, Vol. 5, No. 1, 2000, pp. 67-74. doi:10.1007/s007750050009
[10] J. Q. Hang, S. Rajendran, Y. L. Yang, et al., “Activity of the Isolated HIV Rnase H Domain and Specific Inhibition by N-Hydroxyimides,” Biochemical and Biophysical Re-search Communications, Vol. 317, No. 2, 2004, pp. 321- 329.
[11] K. Pari, G. A. Mueller, E. F. Derose, et al., “Solution Structure of the Rnase H Domain of the HIV-1 Reverse Transcriptase in the Presence of Magnesium,” Biochem, Vol. 42, No. 3, 2003, pp. 639-650. doi:10.1021/bi0204894
[12] K. Katayanagi, M. Okumura and K. Morikawa, “Crystal Structure of Escherichia Coli Rnase HI in Complex with Mg2+ at 2.8 a Resolution: Proof for a Single Mg(2+)-Binding Site,” Proteins, Vol. 17, No. 4, 1993, pp. 337-346. doi:10.1002/prot.340170402
[13] M. Nowotny, S. A. Gaidamakov, R. Ghirlando, et al., “Structure of Human Rnase H1 Complexed with an RNA/DNA Hybrid: Insight into HIV Reverse Transcrip-tion,” Molecular Cell, Vol. 28, No. 2, 2007, pp. 264-276. doi:10.1016/j.molcel.2007.08.015
[14] O. Schatz, F. V. Cromme, F. Grüninger-Leitch, et al., “Point Mutations in Conserved Amino Acid Residues within the C-Terminal Domain of HIV-1 Reverse Tran-scriptase Specifically Repress RNase H Function,” FEBS Letters, Vol. 257, No. 2, 1989, pp. 311-314. doi:10.1016/0014-5793(89)81559-5
[15] S. F. Le Grice, T. Naas, B. Wohigensinger, et al., “Sub-unit-Selective Mutagenesis Indicates Minimal Polymerase Activity in Heterodimer-Associated P51 HIV-1 Reverse Transcriptase,” The EMBO Journal, Vol. 10, No. 12, 1991, pp. 3905-3911.
[16] K. Klumpp and T. Mirzadegan, “Recent Progress in the Design of Small Molecule Inhibitors of HIV RNase H,” Current Pharmaceutical Design, Vol. 12, No. 15, 2006, pp. 1909- 1922. doi:10.2174/138161206776873653
[17] E. Tramontano, “HIV-1 RNase H: Recent Progress in an Exciting, Yet Little Explored, Drug Target,” Mini-Reviews in Medicinal Chemistry, Vol. 6, No. 6, 2006, pp. 727-737. doi:10.2174/138955706777435733
[18] G. M. Clore and A. M. Gronenborn, “Multidimensional Heteronuclear Nuclear Magnetic Resonance of Proteins,” Methods in Enzymology, Vol. 239, 1994, pp. 349-363. doi:10.1016/S0076-6879(94)39013-4
[19] S. Grzesiek and A. Bax, “Amino Acid Type Determination in the Sequential Assignment Procedure of Uniformly 13C/15N-Enriched Proteins,” Journal of Biomolecular NMR, Vol. 3, No. 2, 1993, pp. 185-204.
[20] D. Goddard and D. G. Kneller, “SPARKY 3,” University of California, San Francisco, 2000.
[21] D. M. Himmel, K. A. Maegley, T. A. Pauly, et al., “Structure of HIV-1 Reverse Transcriptase with the Inhi-bitor Beta-Thujap- licinol Bound at the RNase H Active Site,” Structure, Vol. 17, No. 12, 2009, pp. 1625-1635. doi:10.1016/j.str.2009.09.016
[22] A. Jacobo-Molina, J. Ding, R. G. Nanni, et al., “Crystal Structure of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Complexed with Double-Stranded DNA at 3.0 a Resolution Shows Bent DNA,” Proceedings of the National Academy of Sciences of the USA, Vol. 90, No. 13, 1993, pp. 6320-6324.
[23] J. L. Keck and S. Marqusee, “The Putative Substrate Rec-ognition Loop of Escherichia Coli Ribonuclease H Is Not Essential for Activity,” Journal of Biological Chemistry, Vol. 271, No. 33, 1996, pp. 19883-19887. doi:10.1074/jbc.271.33.19883
[24] G. A. Mueller, K. Pari, E. F. Derose, et al., “Backbone Dynamics of the Rnase H Domain of HIV-1 Reverse Transcriptase,” Biochem, Vol. 43, No. 29, 2004, pp. 9332-9342.
[25] Y. Oda, H. Nakamura, S. Kanaya, et al., “Binding of Metal Ions to E. coli Rnase HI Observed by 1H-15N He-teronuclear 2D NMR,” Journal of Biomolecular NMR, Vol. 1, No. 3, 1991, pp. 247-255. doi:10.1007/BF01875518
[26] Y. Oda, H. Nakamura and S. Kanaya, “Role of Histidine 124 in the Catalytic Function of Ribonuclease HI from Escherichia coli,” Journal of Biological Chemistry, Vol. 268, No. 1, 1993, pp. 88-92.
[27] R. Powers, G. M. Clore, A. Bax, et al., “Secondary Structure of the Ribonuclease H Domain of the Human Immunodeficiency Virus Reverse Transcriptase in Solu-tion Using Three-Dimensional Double and Triple Re-sonance Heteronuclear Magnetic Resonance Spectrosco-py,” Journal of Molecular Biology, Vol. 221, No. 4, 1991, pp. 1081- 1090.
[28] R. Powers, G. M. Clore, S. J. Stahl, et al., “Analysis of the Backbone Dynamics of the Ribonuclease H Domain of the Human Immunodeficiency Virus Reverse Tran-scriptase Using 15N Relaxation Measurements,” Biochem, Vol. 31, No. 38, 1992, pp. 9150-9157. doi:10.1021/bi00153a006
[29] D. Chattopadhyay, B. C. Finzel, S. H. Munson, et al., “Crystallographic Analyses of an Active HIV-1 Ribo-nuclease H Domain Show Structural Features That Dis-tinguish It from the Inactive Form,” Acta Crystallogra-phica Section D: Biological Crystallography, Vol. 49, 1993, pp. 423-427. doi:10.1107/S0907444993002409
[30] J. F. Davies, Z. Hostomska, J. Hostomsky, et al., “Crystal Structure of the Ribonuclease H Domain of HIV-1 Re-verse Transcriptase,” Science, Vol. 252, No. 5002, 1991, pp. 88-95. doi:10.1126/science.1707186
[31] J. J?ger, S. J. Smerdon, J. M. Wang, et al., “Comparison of Three Different Crystal Forms Shows HIV-1 Reverse Transcriptase Displays an Internal Swivel Motion,” Structure, Vol. 2, No. 9, 1994, pp. 869-876. doi:10.1016/S0969-2126(94)00087-5
[32] J. A. Grobler, K. Stillmock, B. Hu, et al., “Diketo Acid Inhibitor Mechanism and HIV-1 Integrase: Implications for Metal Binding in the Active Site of Phosphotransferase Enzymes,” Proc. Natl. Acad. Sci. USA, Vol. 99, No. 10, 2002, pp. 6661-6666. doi:10.1073/pnas.092056199
[33] S. R. Budihas, I. Gorshkova, S. Gaidamakov, et al., “Se-lective Inhibition of HIV-1 Reverse Transcriptase-Asso- ciated Ribonuclease H Activity by Hydroxylated Tropo-lones,” Nucleic Acids Research, Vol. 33, No. 4, 2005, pp. 1249-1256. doi:10.1093/nar/gki268

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.