XUV and Soft X-Ray Laser Radiation from Ni-Like Au
Wessameldin S. Abdelaziz, Hamed Mahmoud Hamed Ibrahim
.
DOI: 10.4236/opj.2011.13019   PDF    HTML     5,393 Downloads   9,496 Views   Citations

Abstract

Atomic structure data and effective collision strengths from literature for 1s2 2s2 2p6 3s2 3p63d10 and 34 fine-structure levels contained in the configurations 1s2 2s2 2p6 3s2 3p63d9 4l (l = s, p, d) for the nickel-like Au ion are used in the determination of the reduced population for these levels over a wide range of electron densities and at various electron plasma temperatures. The gain coefficient for those transitions with positive population inversion factor are determined and plotted against the electron density.

Share and Cite:

W. Abdelaziz and H. Ibrahim, "XUV and Soft X-Ray Laser Radiation from Ni-Like Au," Optics and Photonics Journal, Vol. 1 No. 3, 2011, pp. 110-115. doi: 10.4236/opj.2011.13019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. V. Vinogradov, I. I. Sobelman and E. A. Yukov, “Possibility of Constructing a Far-Ultraviolet Laser Utilizing Transitions in Multiply Charged Ions in an Inhomogeneous Plasma,” Soviet Journal of Quantum Electronics, Vol. 5, No. 1, 1975, p. 59. doi:10.1070/QE1975v005n01ABEH010704
[2] B. A. Norton and N. J. Peacock, “Population Inversion in Laser-Produced Plasmas by Pumping with Opacity-Broadened Lines,” Journal of Physics B, Vol. 8, No. 6, 1975, pp. 989-996. doi:10.1088/0022-3700/8/6/026v
[3] V. A. Bhagavatula, “Soft X-Ray Population Inversion by Resonant Photoexcitation in Multicomponent Laser Plasmas,” Journal of Applied Physics, Vol. 47, No. 10, 1976, pp. 4535-4537. doi:10.1063/1.322425
[4] P. Monier, C. Chenais-Popovics, J. P. Geindre and J. C. Gauthier, “Demonstration of Quasiresonant X-Ray Photoexcitation in a Laser-Created Plasma,” Physical Review A, Vol. 38, 1988, pp. 2508-2515. doi:10.1103/PhysRevA.38.2508
[5] J. Nilsen, “Ni-Like X-Ray Lasers Resonantly Photopumped by Ly-Α Radiation,” Physical Review Letters, Vol. 66, 1991, pp. 305-308. doi:10.1103/PhysRevLett.66.305
[6] J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. McGuire, L. E. Ruggles, M. F. Vargas, J. P. Apruzese, R. W. Clark and J. Davis, “Demonstration of Population inversion by Resonant Photopumping in a Neon Gas Cell Irradiated by A Sodium Z Pinch,” Physical Review Letters, Vol. 68, 1992, p. 796. doi:10.1103/PhysRevLett.68.796
[7] J. Zhang and E. E. Fill, “Resonantly Photo-Pumped Fe16+ Soft X-Ray Laser,” Optical and Quantum Electronics, Vol. 24, No. 12, 1992, pp. 1343-1350. doi:10.1007/BF00625810
[8] J. Nilsen, P. Beiersdorfer, S. R. Elliott, T. W. Phillips, B. A. Bryunetkin, V. M. Dyakin, T. A. Pikuz, A. Ya. Faenov, S. A. Pikuz, S. von Goeler, M. Bitter, P. A. Loboda, V. A. Lykov and V. Yu. Politov, “Measurement of the Ly-α Mg Resonance with the 2s→3p Ne-Like Ge Line,” Physical Reviews A, Vol. 50, No. 3, 1994, pp. 2143-2149. doi:10.1103/PhysRevA.50.2143
[9] N. Qi and M. Krishnan, “Photopumping of a C iii Ultraviolet Laser by Mn vi Line Radiation,” Physical Review Letters, Vol. 59, No. 18, 1987, pp. 2051-2054. doi:10.1103/PhysRevLett.59.2051
[10] W. H. Goldstein, J. Oreg, A. Zigler, A. Bar-Shalom and M. Klapisch, “Gain Predictions for Nickel-Like Gadolinium from a 181-Level Multiconfigurational Distorted- Wave Collisional-Radiative Model”, Physical Reviews A, Vol. 38, No. 4, 1988, pp. 1797-1804. doi:10.1103/PhysRevA.38.1797
[11] J. Zeng, G. Zhao and J. Yuan, “Electron Impact Collision Strengths and Oscillator Strengths for Ge-, Ga-, Zn-, Cu-, Ni-, and Co-Like Au Ions,” Atomic Data and Nuclear Data Tables, Vol. 93, 2007, pp. 199-293. doi:10.1016/j.adt.2006.10.002
[12] U. Feldman, A. K. Bhatia and S. Suckewer, “Short Wavelength Laser Calculations for Electron Pumping in Neon Like Krypton (Kr XXVII),” Journal of Applied Physics, Vol. 54, No. 5, 1983, pp. 2188-2197. doi:10.1063/1.332371
[13] U. Feldman, J. F. Seely and G. A. Doschek, “3s-3p Laser Gain and X-Ray Line Ratios for the Carbon Isoelectronic Sequence,” Journal of Applied Physics, Vol. 59, No. 12, 1986, pp. 3953-3957. doi:10.1063/1.336695
[14] U. Feldman, G. A. Doschek, J. F. Seely and A. K. Bhatia, “Short Wavelength Laser Calculations for Electron Pumping in Be I and B I Isoelectronic Sequences (18≤Z≤36),” Journal of Applied Physics, Vol. 58, No. 8, 1985, pp. 2909-2915. doi:10.1063/1.335838
[15] U. Feldman, J. F. Seely and A. K. Bhatia, “Scaling of Collisionally Pumping 3s-3p Lasers in the Neon Isoelectronic Sequence,” Journal of Applied Physics, Vol. 56, No. 9, 1984, pp. 2475-2478. doi:10.1063/1.334308
[16] G. Chapline and L. Wood, “X-Ray Lasers,” Physics Today, Vol. 28, 1975, pp. 40-48. doi:10.1063/1.3069004
[17] A. V. Vinogradov and V. N. Shlyaptsev, “Calculations of Population Inversion Due to Transitions in Multiply Charged Neon-Like Ions in the 200 - 2000 ? Range,” Soviet Journal of Quantum Electronics, Vol. 10. No. 6, 1980, p. 754.
[18] I. I. Sobel’man, “Introduction to the Theory of Atomic Spectra,” International Series of Monographs in Natural Philosophy, Pergamon Press, Oxford, Vol. 40, 1979.
[19] U. Feldman, J. F. Seely and A. K. Bhatia, “Density Sensitive X-Ray Line Ratios in the Be I, Bi and Ne I Isoelectronic Sequences,” Journal of Applied Physics, Vol. 58, No. 11, 1985, pp. 3954-3958. doi:10.1063/1.335569
[20] W. S. Abdelaziz, “Gain Coefficient Calculation for Short Wave Laser Emission from Nickel-Like Sm,” Physica Scripta, Vol. 79, 2009, pp. 1-4.
[21] W. S. Abdelaziz, “Soft X-Ray Laser Emission from W+46,” European Physical Journal D, Vol. 75, 2009, pp. 17-21. doi:10.1140/epjd/e2009-00209-3
[22] W. S. Abdelaziz and El Sherbini, “Reduced Population and Gain Coefficient Calculations for Soft X-Ray Laser Emission from Eu+35,” Optics & Laser Technology, Vol. 42, No. 5, 2010, pp. 699-702.
[23] S. A. Wessameldin, “High Gain Predictions for Ni-Like Gd Ion,” Optics Communications, Vol. 284, No. 12, 2011, pp. 2859-2862. doi:10.1016/j.optcom.2011.01.024

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.