Optimization of Duty Ratio of Metallic Grating Arrays for Infrared Photodetectors

DOI: 10.4236/opj.2011.13016   PDF   HTML     3,792 Downloads   7,454 Views   Citations


Influence of duty ratio of metallic gratings applied in quantum well infrared photodetector (QWIP) with detection ranging from 3 μm to 5 μm was studied in this paper. The influence on longer enhanced wavelength working at infrared waveband was investigated. A relationship between the duty ratio and the enhanced peak intensity is given. Some results can be applied to optimize the enhanced efficiency of the metallic gratings.

Share and Cite:

D. Liu, Y. Fu, L. Yang, B. Zhang, H. Li, K. Fu and M. Xiong, "Optimization of Duty Ratio of Metallic Grating Arrays for Infrared Photodetectors," Optics and Photonics Journal, Vol. 1 No. 3, 2011, pp. 97-100. doi: 10.4236/opj.2011.13016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolf, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature, Vol. 391, No. 6668, 1998, pp. 667-669.
[2] W. L. Barnes, A. Dereux and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature, Vol. 424, No. 14, 2003, pp. 824-829.
[3] U. Schroter and D. Heitmann, “Surface-Plasmon-Enhan- Ced Transmission through Metalliclic Gratings,” Physical Review B, Vol. 58, No. 23, 1998, pp. 419-421.
[4] E. Popov, M. Nevière, S. Enoch and R. Reinisch, “Theory of Light Transmission through Subwavelength Periodic Hole Arrays,” Physical Review B, Vol. 62, No. 23, 2000, pp. 16100-16108. doi:10.1103/PhysRevB.62.16100
[5] A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno and Garcia-Vidal, “Evanescently Coupled Resonance in Surface Plasmon Enhanced Transmission,” Optics Communications, Vol. 200, No. 1-6, 2001, pp. 1-7.
[6] S. A. Maier, “Plasmonics: Fundamentals and Aplications,” Springer, Science+Business Media LLC, 2007.
[7] H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tracts in Modem Physics, Springer-Verlag, Berlin, Heidelberg, Vol. 2, p. l, 1988.
[8] H. Schneider and H. C. Liu, “Quantum Well Infrared Photodetectors,”Springer-Verlag, Berlin Heidelberg, 2007.
[9] Z.-B. Li, Y.-H. Yang, X.-T. Kong, W.-Y. Zhou and J.-G. Tian, “Enhanced Transmission through a Subwavelength Slit Surrounded by Periodic Dielectric Bars above the Metallic Surface,” Applied Optics, Vol. 10, 2008, Article ID: 095202.
[10] H. P. Paudel, K. Bayat, M. F. Baroughi, S. May and D. W. Galipeau, “Geometry Dependence of Field Enhancement in 2D Metalliclic Photonic Crystals,” Optics Express, Vol. 17, No. 24, 2009, pp. 22179-22189. doi:10.1364/OE.17.022179
[11] J. W. Cleary, G. Medhi, R. E. Peale and W. R. Buchwald, “Long-Wave Infrared Surface Plasmon Grating Coupler,” Applied Optics, Vol. 49, No. 16, 2010, pp. 3102-3109. doi:10.1364/AO.49.003102
[12] W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux and T.W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metallic Film,” Physical Review Letters, Vol. 10, No. 92, 2004, Article ID: 107401.
[13] A. Benabbas, V. Halté and J.-Y. Bigot, “Analytical Model of the Optical Response of Periodically Structured Metalliclic Films,” Optics Express, Vol. 22, 2005, pp. 8730-8745. doi:10.1364/OPEX.13.008730
[14] L. Martin-Moreno and F. J. Garcia-Vidal, “Optical Transmission Through Circular Hole Arrays in Optically Thick Metallic Films,” Optics Express, Vol. 12, No. 16, 2004, pp. 3619-3628. doi:10.1364/OPEX.12.003619
[15] Y. Xie, A. R. Zakharian, J. V. Moloney and M. Mansuripur, “Transmission of Light through Periodic Arrays of Sub-Wavelength Slits in Metalliclic Hosts,” Optics Express, Vol. 14, No. 14, 2006, pp. 6400-6413. doi:10.1364/OE.14.006400
[16] Lumerical Solution Inc., “FDTD Solution, A Commercial Professional Software,” Lumerical Solution Inc., Vancouver, Canada. http://www.lumerical.com
[17] L. Salomon, F. Grillot, A. V. Zayats and F. de Fornel, “Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metallic Film,” Physical Review Letters, Vol. 86, 2001, pp. 1110-1113. doi:10.1103/PhysRevLett.86.1110
[18] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, “Surface Plasmons Enhance Optical Transmission through Subwavelength Holes,” Physical Review B, Vol. 58, No. 11, 1998, pp. 6779-6782. doi:10.1103/PhysRevB.58.6779
[19] J. G. Rivas, C. Schotsch, P. H. Bolivar and H. Kurz, “Enhanced Transmission of Thz Radiation through Subwavelength Hole,” Physical Review B, Vol. 68, No. 20, 2003, Article ID: 201306.
[20] A. P. Hibbins, J. R. Sambles and C. R. Lawrence, “Gratingless Enhanced Microwave Transmission through a Subwavelength Aperture in a Thick Metallic Plate,” Applied Physics Letters, Vol. 84, No. 24, 2002, pp. 4661- 4663.
[21] M. Sarrazin, J.-P. Vigneron and J.-M. Vigoureux, “Role of Wood Anomalies in Optical Properties of Thin Metalliclic Films with a Bidimensional Array of Subwavelength Holes,” Physical Review B, Vol. 67, 2003, Article ID: 085415. doi:10.1103/PhysRevB.67.085415
[22] K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Physical Review Letters, Vol. 92, 2004, Article ID: 183901. doi:10.1103/PhysRevLett.92.183901
[23] A. Degiron and T. W. Ebbesen, “The Role of Localized Surface Plasmon Modes in the Enhanced Transmission of Periodic Subwavelength Apertures,” Journal of Optics A: Pure and Applied Optics, Vol. 7, No. 2, 2005, pp. S90- S95. doi:10.1088/1464-4258/7/2/012
[24] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Physical Review Letters, Vol. 86, No. 6, 2001, pp. 1114-1117. doi:10.1103/PhysRevLett.86.1114

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.