ral medication that was given according to the needs of the patient. A more strategic and planned dosing of levodopa at different doses combined with and without specific enzyme inhibitors would probably have resulted in better data. However, to perform a study according to that design is difficult from ethical point of view.

In this paper, we could conclude that levodopa, both given orally and IV in PD patient, resulted in increased levels of levodopa and DA in the BG. During oral medication levodopa and DA followed each other well showing that a PD patient with severe disease and probably pronounced nigral degeneration, still can metabolize levodopa to DA. This is an evidence of that treatment with levodopa still is beneficial, even in advanced PD. This could also be one explanation to why levodopa still is the golden standard treatment in PD. The conversion to DA gives good symptom relief and few side effects in contrast to DA agonists and enzyme inhibitors that often cause psychiatric side effects in late stages of the disease. We could also see that STN DBS seems to increase DA levels with a more pronounced effect on ipsilateral structures in striatum.

To investigate the metabolism of levodopa to DA in vivo in human brain is difficult both due to ethical considerations and because of the delicate and complex structures involved. However, more studies are of importance to get better knowledge about the mechanisms of the disease and the mechanisms of the treatments, both medication and DBS.

Acknowledgements

The present study was supported by grants from the Research Foundation of the County Council of Östergötland, FORSS, Swedish Parkinson’s Foundation, Swedish Research Council (VR), Swedish Governmental Agency for Innovation Systems (VINNOVA grant 311-2006-7661), the Swedish Foundation for Strategic Research (SSF) and Futurum―the academy of Health and Care, Region Jönkö- ping County. We gratefully thank Lars Valter at Linköping University for statistical guidance.

Conflicts of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Abbrevations

BBB Blood-brain-barrier

BG Basal ganglia

CDS Continuous dopaminergic stimulation

Cmax Maximal concentration

Cmin Minimum concentration

CNS Central nervous system

COMT Catechol-O-methyltransferase

DA Dopamine

DBS Deep brain stimulation

DDI Dopa decarboxylase inhibitor

Gpi Globus pallidus interna

HPLC High-performance liquid chromatography

IV Intravenous

LID Levodopa-induced dyskinesia

NMS Non-motor symptoms

PD Parkinson’s disease

SN Substantia nigra

SNc Substantia nigra pars compacta

STN Subthalamic nucleus

T1/2 Half-life

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.

A wide selection of journals (inclusive of 9 subjects, more than 200 journals)

Providing 24-hour high-quality service

User-friendly online submission system

Fair and swift peer-review system

Efficient typesetting and proofreading procedure

Display of the result of downloads and visits, as well as the number of cited articles

Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/

Or contact apd@scirp.org

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Nord, M., Zsigmond, P., Kullman, A., Arstrand, K. and Dizdar, N. (2010) The Effect of Peripheral Enzyme Inhibitors on Levodopa Concentrations in Blood and CSF. Movement Disorders, 25, 363-367.
https://doi.org/10.1002/mds.22613
[2] Nutt, J.G., Woodward, W.R. and Anderson, J.L. (1985) The Effect of Carbidopa on the Pharmacokinetics of Intravenously Administered Levodopa: The Mechanism of Action in the Treatment of Parkinsonism. Annals of Neurology, 18, 537-543.
https://doi.org/10.1002/ana.410180505
[3] Robertson, D.R., Wood, N.D., Everest, H., Monks, K., Waller, D.G., Renwick, A.G. and George, C.F. (1989) The Effect of Age on the Pharmacokinetics of Levodopa Administered Alone and in the Presence of Carbidopa. British Journal of Clinical Pharmacology, 28, 61-69.
https://doi.org/10.1111/j.1365-2125.1989.tb03506.x
[4] Mizutani, Y., Okada, Y., Ogawa, M., Hasegawa, T. and Nabeshima, T. (1995) Pharmacokinetic Model of Oral Levodopa and Role of Carbidopa in Parkinsonian Patients. Biological and Pharmaceutical Bulletin, 18, 1729-1737.
https://doi.org/10.1248/bpb.18.1729
[5] Dingemanse, J., Kleinbloesem, C.H., Zurcher, G., Wood, N.D. and Crevoisier, C. (1997) Pharmacodynamics of Benserazide Assessed by Its Effects on Endogenous and Exogenous Levodopa Pharmacokinetics. British Journal of Clinical Pharmacology, 44, 41-48.
https://doi.org/10.1046/j.1365-2125.1997.00610.x
[6] Khor, S.P. and Hsu, A. (2007) The Pharmacokinetics and Pharmacodynamics of Levodopa in the Treatment of Parkinson’s Disease. Current Clinical Pharmacology, 2, 234-243.
https://doi.org/10.2174/157488407781668802
[7] Bianchine, J.R., Messiha, F.S. and Hsu, T.H. (1972) Peripheral Aromatic L-Amino Acids Decarboxylase Inhibitor in Parkinsonism. II. Effect on Metabolism of L-2-14 C-Dopa. Clinical Pharmacology and Therapeutics, 13, 584-594.
https://doi.org/10.1002/cpt1972134584
[8] Heikkinen, H., Varhe, A., Laine, T., Puttonen, J., Kela, M., Kaakkola, S. and Reinikainen, K. (2002) Entacapone Improves the Availability of L-Dopa in Plasma by Decreasing Its Peripheral Metabolism Independent of L-Dopa/Carbidopa Dose. Current Clinical Pharmacology, 54, 363-371.
https://doi.org/10.1046/j.1365-2125.2002.01654.x
[9] Kaakkola, S., Teravainen, H., Ahtila, S., Rita, H. and Gordin, A. (1994) Effect of Entacapone, a COMT Inhibitor, on Clinical Disability and Levodopa Metabolism In Parkinsonian Patients. Neurology, 44, 77-80.
https://doi.org/10.1212/WNL.44.1.77
[10] Ruottinen, H.M. and Rinne, U.K. (1996) A Double-Blind Pharmacokinetic and Clinical Dose-Response Study of Entacapone as an Adjuvant to Levodopa Therapy in Advanced Parkinson’s Disease. Clinical Neuropharmacology, 19, 283-296.
https://doi.org/10.1097/00002826-199619040-00001
[11] Ahtila, S., Kaakkola, S., Gordin, A., Korpela, K., Heinavaara, S., Karlsson, M., Wikberg, T., Tuomainen, P. and Mannisto, P.T. (1995) Effect of Entacapone, a COMT Inhibitor, on the Pharmacokinetics and Metabolism of Levodopa after Administration of Controlled-Release Levodopa-Carbidopa in Volunteers. Clinical Neuropharmacology, 18, 46-57.
https://doi.org/10.1097/00002826-199502000-00006
[12] Bastide, M.F., Meissner, W.G., Picconi ,B., Fasano, S., Fernagut, P.O., Feyder, M., Francardo, V., Alcacer, C., Ding, Y., Brambilla, R., Fisone, G., Jon Stoessl, A., Bourdenx, M., Engeln, M., Navailles, S., De Deurwaerdere, P., Ko, W.K., Simola, N., Morelli, M., Groc, L., Rodriguez, M.C., Gurevich, E.V., Quik, M., Morari, M., Mellone, M., Gardoni, F., Tronci, E., Guehl, D., Tison, F., Crossman, A.R., Kang, U.J., Steece-Collier, K., Fox, S., Carta, M., Angela, C.M. and Bezard, E. (2015) Pathophysiology of L-Dopa-Induced Motor and Non-Motor Complications in Parkinson’s Disease. Progress in Neurobiology, 132, 96-168.
https://doi.org/10.1016/j.pneurobio.2015.07.002
[13] Halje, P., Tamte, M., Richter, U., Mohammed, M., Cenci, M.A. and Petersson, P. (2012) Levodopa-Induced Dyskinesia Is Strongly Associated with Resonant Cortical Oscillations. Journal of Neuroscience, 32, 16541-16551.
[14] Fabbrini, G., Brotchie, J.M., Grandas, F., Nomoto, M. and Goetz, C.G. (2007) Levodopa-Induced Dyskinesias. Movement Disorders, 22, 1379-1389.
https://doi.org/10.1002/mds.21475
[15] Ahlskog, J.E. and Muenter, M.D. (2001) Frequency of Levodopa-Related Dyskinesias and Motor Fluctuations as Estimated from the Cumulative Literature. Movement Disorders, 16, 448-458.
https://doi.org/10.1002/mds.1090
[16] Cenci, M.A. (2007) L-DOPA-Induced Dyskinesia: Cellular Mechanisms and Approaches to Treatment. Parkinsonism & Related Disorders, 3, 263-267.
[17] Cenci, M.A. and Lindgren, H.S. (2007) Advances in Understanding L-DOPA-Induced Dyskinesia. Current Opinion in Neurobiology, 17, 665-671.
https://doi.org/10.1016/j.conb.2008.01.004
[18] Carlsson, T., Winkler, C., Burger, C., Muzyczka, N., Mandel, R.J., Cenci, A., Bjorklund, A. and Kirik, D. (2005) Reversal of Dyskinesias in an Animal Model of Parkinson’s Disease by Continuous L-DOPA Delivery Using rAAV Vectors. Brain, 128, 559-569.
https://doi.org/10.1093/brain/awh374
[19] Krack, P., Batir, A., Van Blercom, N., Chabardes, S., Fraix, V., Ardouin, C., Koudsie, A., Limousin, P.D., Benazzouz, A., LeBas, J.F., Benabid, A.L. and Pollak, P. (2003) Five-Year Follow-Up of Bilateral Stimulation of the Subthalamic Nucleus in Advanced Parkinson’s Disease. The New England Journal of Medicine, 349, 1925-1934.
https://doi.org/10.1056/NEJMoa035275
[20] Benabid, A.L., Krack, P.P., Benazzouz, A., Limousin, P., Koudsie, A. and Pollak, P. (2000) Deep Brain Stimulation of the Subthalamic Nucleus for Parkinson’s Disease: Methodologic Aspects and Clinical Criteria. Neurology, 55, 40-44.
[21] Volkmann, J., Allert, N., Voges, J., Weiss, P.H., Freund, H.J. and Sturm, V. (2001) Safety and Efficacy of Pallidal or Subthalamic Nucleus Stimulation in Advanced PD. Neurology, 56, 548-551.
[22] Volkmann, J. (2004) Deep Brain Stimulation for the Treatment of Parkinson’s Disease. Journal of Clinical Neurophysiology, 21, 6-17.
[23] Benabid, A.L., Chabardes, S., Mitrofanis, J. and Pollak, P. (2009) Deep Brain Stimulation of the Subthalamic Nucleus for the Treatment of Parkinson’s Disease. Lancet Neurology, 8, 67-81.
https://doi.org/10.1016/S1474-4422(08)70291-6
[24] Kleiner-Fisman, G., Herzog, J., Fisman, D.N., Tamma, F., Lyons, K.E., Pahwa, R., Lang, A.E. and Deuschl, G. (2006) Subthalamic Nucleus Deep Brain Stimulation: Summary and Meta-Analysis of Outcomes. Movement Disorders, 14, 290-304.
[25] Li, D., Cao, C., Zhang, J., Zhan, S., Chen, S. and Sun, B. (2013) Subthalamic Nucleus Deep Brain Stimulation for Parkinson’s Disease: 8 Years of Follow-Up. Translational Neurodegeneration, 2, 11.
https://doi.org/10.1186/2047-9158-2-11
[26] Rodriguez-Oroz, M.C., Moro, E. and Krack, P. (2012) Long-Term Outcomes of Surgical Therapies for Parkinson’s Disease. Movement Disorders, 27, 1718-1728.
https://doi.org/10.1002/mds.25214
[27] Zsigmond, P., Dernroth, N., Kullman, A., Augustinsson, L.E. and Dizdar, N. (2012) Stereotactic Microdialysis of the Basal Ganglia in Parkinson’s Disease. Journal of Neuroscience Methods, 207, 17-22.
https://doi.org/10.1016/j.jneumeth.2012.02.021
[28] Zsigmond, P., Nord, M., Kullman, A., Diczfalusy, E., Wardell, K. and Dizdar, N. (2014) Neurotransmitter Levels in Basal Ganglia during Levodopa and Deep Brain Stimulation Treatment in Parkinson’s Disease. Neurology and Clinical Neuroscience, 2, 149-155.
[29] Stefani, A., Fedele, E., Vitek, J., Pierantozzi, M., Galati, S., Marzetti, F., Peppe, A., Bassi, M.S., Bernardi, G. and Stanzione, P. (2011) The Clinical Efficacy of L-DOPA and STN-DBS Share a Common Marker: Reduced GABA Content in the Motor Thalamus. Cell Death & Disease, 2, 154.
https://doi.org/10.1038/cddis.2011.35
[30] Stefani, A., Fedele, E., Galati, S., Raiteri, M., Pepicelli, O., Brusa, L., Pierantozzi, M., Peppe, A., Pisani, A., Gattoni, G., Hainsworth, A.H., Bernardi, G., Stanzione, P. and Mazzone, P. (2006) Deep Brain Stimulation in Parkinson’s Disease Patients: Biochemical Evidence. Journal of Neural Transmission, 401-408.
https://doi.org/10.1007/978-3-211-45295-0_60
[31] Stefani, A., Fedele, E., Galati, S., Pepicelli, O., Frasca, S., Pierantozzi, M., Peppe, A., Brusa, L., Orlacchio, A., Hainsworth, A.H., Gattoni, G., Stanzione, P., Bernardi, G., Raiteri, M. and Mazzone, P. (2005) Subthalamic Stimulation Activates Internal Pallidus: Evidence from cGMP Microdialysis in PD Patients. Annals of Neurology, 57, 448-452.
[32] Meyerson, B.A., Linderoth, B., Karlsson, H. and Ungerstedt, U. (1990) Microdialysis in the Human Brain: Extracellular Measurements in the Thalamus of Parkinsonian Patients. Life Sciences, 46, 301-308.
https://doi.org/10.1016/0024-3205(90)90037-R
[33] Kilpatrick, M., Church, E., Danish, S., Stiefel, M., Jaggi, J., Halpern, C., Kerr, M., Maloney, E., Robinson, M., Lucki, I., Krizman-Grenda, E. and Baltuch, G. (2010) Intracerebral Microdialysis during Deep Brain Stimulation Surgery. Journal of Neuroscience Methods, 190, 106-111.
[34] Galati, S., Mazzone, P., Fedele, E., Pisani, A., Peppe, A., Pierantozzi, M., Brusa, L., Tropepi, D., Moschella, V., Raiteri, M., Stanzione, P., Bernardi, G. and Stefani, A. (2006) Biochemical and Electrophysiological Changes of Substantia Nigra Pars Reticulata Driven by Subthalamic Stimulation in Patients with Parkinson’s Disease. European Journal of Neuroscience, 23, 2923-2928.
[35] Fedele, E., Mazzone, P., Stefani, A., Bassi, A., Ansaldo, M.A., Raiteri, M., Altibrandi M.G., Pierantozzi, M., Giacomini, P., Bernardi, G. and Stanzione, P. (2001) Microdialysis in Parkinsonian Patient Basal Ganglia: Acute Apomorphine-Induced Clinical and Electrophysiological Effects Not Paralleled by Changes in the Release of Neuroactive Amino Acids. Experimental Neurology, 167, 356-365.
https://doi.org/10.1006/exnr.2000.7568
[36] Blomquist, L., Dizdar, N., Karlsson, M., Kagedal, B., Ossowicki, H., Pettersson, A. and Smeds, S. (1991) Microdialysis of 5-S-Cysteinyldopa from Interstitial Fluid in Cutaneous Human Melanoma Transplanted to Athymic Mice. Melanoma Research, 1, 23-32.
https://doi.org/10.1097/00008390-199104000-00004
[37] Heikkinen, H., Nutt, J.G., LeWitt, P.A., Koller, W.C. and Gordin, A. (2001) The Effects of Different Repeated Doses of Entacapone on the Pharmacokinetics of L-Dopa and on the Clinical Response to L-Dopa in Parkinson’s Disease. Clinical Neuropharmacology, 24, 150-157.
[38] Sawle, G.V., Burn, D.J., Morrish, P.K., Lammertsma, A.A., Snow, B.J., Luthra, S., Osman, S. and Brooks, D.J. (1994) The Effect of Entacapone (OR-611) on Brain [18F]-6-L-Fluorodopa Metabolism: Implications for Levodopa Therapy of Parkinson’s Disease. Neurology, 44, 1292-1297.
[39] Ng, K.Y., Chase, T.N., Colburn, R.W. and Kopin, I.J. (1970) L-Dopa-Induced Release of Cerebral Monoamines. Science, 170, 76-77.
https://doi.org/10.1126/science.170.3953.76
[40] Arai, R., Karasawa, N., Geffard, M., Nagatsu, T. and Nagatsu, I. (1994) Immunohistochemical Evidence that Central Serotonin Neurons Produce Dopamine from Exogenous L-DOPA in the Rat, with Reference to the Involvement of Aromatic L-Amino Acid Decarboxylase. Brain Research, 667, 295-299.
https://doi.org/10.1016/0006-8993(94)91511-3
[41] Tanaka, H., Kannari, K., Maeda, T., Tomiyama, M., Suda, T. and Matsunaga, M. (1999) Role of Serotonergic Neurons in L-DOPA-Derived Extracellular Dopamine in the Striatum of 6-OHDA-Lesioned Rats. NeuroReport, 10, 631-634.
[42] Maeda, T., Nagata, K., Yoshida, Y. and Kannari, K. (2005) Serotonergic Hyperinnervation into the Dopaminergic Denervated Striatum Compensates for Dopamine Conversion from Exogenously Administered l-DOPA. Brain Research, 1046, 230-233.
https://doi.org/10.1016/j.brainres.2005.04.019
[43] Arai, R., Karasawa, N., Geffard, M. and Nagatsu, I. (1995) L-DOPA Is Converted to Dopamine in Serotonergic Fibers of the Striatum of the Rat: A Double-Labeling Immunofluorescence Study. Neuroscience Letters, 195, 195-198.
https://doi.org/10.1016/0304-3940(95)11817-G
[44] Kish, S.J., Tong, J., Hornykiewicz, O., Rajput, A., Chang, L.J., Guttman, M. and Furukawa, Y. (2008) Preferential Loss of Serotonin Markers in Caudate versus Putamen in Parkinson’s Disease. Brain, 131, 120-131.
[45] Munoz, A., Li, Q., Gardoni, F., Marcello, E., Qin, C., Carlsson, T., Kirik, D., Di Luca, M., Bjorklund, A., Bezard, E. and Carta, M. (2008) Combined 5-HT1A and 5-HT1B Receptor Agonists for the Treatment of L-DOPA-Induced Dyskinesia. Brain, 131, 3380-3394.
https://doi.org/10.1093/brain/awn235
[46] Carta, M., Carlsson, T., Kirik, D. and Bjorklund, A. (2007) Dopamine Released from 5-HT Terminals is the Cause of L-DOPA-Induced Dyskinesia in Parkinsonian Rats. Brain, 130, 1819-1833.
[47] Shin, E., Tronci, E. and Carta, M. (2012) Role of Serotonin Neurons in L-DOPA- and Graft-Induced Dyskinesia in a Rat Model of Parkinson’s Disease. Parkinson's Disease, 2012.
[48] Eskow Jaunarajs, K.L., George, J.A. and Bishop, C. (2012) L-DOPA-Induced Dysregulation of Extrastriatal Dopamine and Serotonin and Affective Symptoms in a Bilateral Rat Model of Parkinson’s Disease. Neuroscience, 218, 243-256.
https://doi.org/10.1016/j.neuroscience.2012.05.052
[49] Black, K.J., Hershey, T., Hartlein, J.M., Carl, J.L. and Perlmutter, J.S. (2005) Levodopa Challenge Neuroimaging of Levodopa-Related Mood Fluctuations in Parkinson’s Disease. Neuropsychopharmacology, 30, 590-601.
[50] Richard, I.H., Frank, S., LaDonna, K.A., Wang, H., McDermott, M.P. and Kurlan, R. (2005) Mood Fluctuations in Parkinson’s Disease: A Pilot Study Comparing the Effects of Intravenous and Oral Levodopa Administration. Neuropsychiatric Disease and Treatment, 1, 261-268.
[51] Kulisevsky, J., Pascual-Sedano, B., Barbanoj, M., Gironell, A., Pagonabarraga, J. and Garcia-Sanchez, C. (2007) Acute Effects of Immediate and Controlled-Release Levodopa on Mood in Parkinson’s Disease: A Double-Blind Study. Movement Disorders, 22, 62-67.
https://doi.org/10.1002/mds.21205
[52] Jacobs, B.L. and Azmitia, E.C. (1992) Structure and Function of the Brain Serotonin System. Physiological Reviews, 72, 165-229.
[53] Todorova, A., Jenner, P. and Chaudhuri, R.K. (2014) Non-Motor Parkinson’s: Integral to Motor Parkinson’s, Yet Often Neglected. Practical Neurology, 14, 310-322.
https://doi.org/10.1136/practneurol-2013-000741
[54] Starkstein, S.E., Preziosi, T.J., Forrester, A.W. and Robinson, R.G. (1990) Specificity of Affective and Autonomic Symptoms of Depression in Parkinson’s Disease. Journal of Neurology, Neurosurgery and Psychiatry, 53, 869-873.
https://doi.org/10.1136/jnnp.53.10.869
[55] Menza, M.A., Palermo, B., DiPaola, R., Sage, J.I. and Ricketts, M.H. (1999) Depression and Anxiety in Parkinson’s Disease: Possible Effect of Genetic Variation in the Serotonin Transporter. Journal of Geriatric Psychiatry and Neurology, 12, 49-52.
[56] Murai, T., Muller, U., Werheid, K., Sorger, D., Reuter, M., Becker, T., Von Cramon, D.Y. and Barthel, H. (2001) In vivo Evidence for Differential Association of Striatal Dopamine and Midbrain Serotonin Systems with Neuropsychiatric Symptoms in Parkinson’s Disease. Journal of Neuropsychiatry and Clinical Neurosciences, 13, 222-228.
https://doi.org/10.1176/jnp.13.2.222
[57] Contin, M. and Martinelli, P. (2010) Pharmacokinetics of Levodopa. Journal of Neurology, 257, 253-261.
https://doi.org/10.1007/s00415-010-5728-8
[58] Hawkins, R.A., Mokashi, A. and Simpson, I.A. (2005) An Active Transport System in the Blood-Brain Barrier May Reduce Levodopa Availability. Experimental Neurology, 195, 267-271.
https://doi.org/10.1016/j.expneurol.2005.04.008

  
comments powered by Disqus
APD Subscription
E-Mail Alert
APD Most popular papers
Publication Ethics & OA Statement
APD News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.