Effects of Weight Loss on Pericardial Fat and Left Ventricular Mass Assessed with Cardiac Magnetic Resonance Imaging in Morbid Obesity

DOI: 10.4236/ijcm.2011.24062   PDF   HTML     6,399 Downloads   10,234 Views   Citations


Background: Obesity is a risk factor for cardiovascular disease and mortality. Significant weight loss has beneficial effects on left ventricular structure, in particular on regression of left ventricular hypertrophy (LVH). We therefore evaluated the consequences of significant weight loss on left ventricular morphology, hemodynamics and pericardial fat. Methods: We performed volumetric cardiac magnetic resonance (CMR) imaging before and after significant weight loss due to laparoscopic adjustable gastric banding (LAGB). CMR was used to measure cardiac mass, volume and function, as well as to quantify pericardial fat. Results: Eleven patients (age 40.5 ± 10 yrs, body mass index 42.5 ± 3.9 kg/m2) underwent CMR imaging before and a median 15.4 months after gastric banding. The BMI declined by 9.3 ± 3.3 kg/m2 (p < 0.001) with an average excess weight loss (EWL) of 54.7% ± 23.6%. The left ventricular mass (LVM) decreased from 130.0 g ± 35.4 g to 117.0 g ± 34.9 g (p = 0.003), whereas the left ventricular chamber volumes and sys-tolic function remained unchanged. After LAGB surgery the pericardial fat volume was reduced by 34.4 ml ± 22.1 ml (p < 0.001). There was a significant correlation for change in pericardial fat volume with change in LVM (R = 0.67, p = 0.024), with no relationship between percentage of EWL and change in LVM (p = 0.49). Discussion: Significant weight loss in obesity is accompanied by a marked regression of LVH, with no apparent change in cardiac volume or function. The local effect of a diminished amount of pericardiac fat tissue may be more important than absolute weight loss with respect to the regression of LVH in obesity.

Share and Cite:

S. Schneiter, R. Warrier, L. Lefkovits, C. Laurie, P. O’Brien and A. Taylor, "Effects of Weight Loss on Pericardial Fat and Left Ventricular Mass Assessed with Cardiac Magnetic Resonance Imaging in Morbid Obesity," International Journal of Clinical Medicine, Vol. 2 No. 4, 2011, pp. 360-366. doi: 10.4236/ijcm.2011.24062.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Malik, N. D. Wong, S. S. Franklin, et al., “Impact of the Metabolic Syndrome on Mortality from Coronary Heart Disease, Cardiovascular Disease, and All Causes in United States Adults,” Circulation, Vol. 110, No. 10, 2004, pp. 1245-1250.
[2] J. K. Alexander, “Obesity and the Heart,” Heart Disorders & Disease, Vol. 2, No. 4, 1993, pp. 317-321.
[3] M. A. Alpert, “Obesity Cardiomyopathy: Pathophysiology and Evolution of the Clinical Syndrome,” American Journal of the Medical Sciences, Vol. 321, No. 4, 2001, pp. 225-236. doi:10.1097/00000441-200104000-00003
[4] P. Friberg, A. Allansdotter-Johnsson, A. Ambring, et al., “Increased Left Ventricular Mass in Obese Adolescents,” European Heart Journal, Vol. 25, No. 11, 2004, pp. 987-992. doi:10.1016/j.ehj.2004.03.018
[5] P. G. Danias, N. A. Tritos, M. Stuber, K. V. Kissinger, C. J. Salton and W. J. Manning, “Cardiac Structure and Function in the Obese: A Cardiovascular Magnetic Resonance Imaging Study,” Journal of Cardiovascular Magnetic Resonance, Vol. 5, No. 3, 2003, pp. 431-438. doi:10.1081/JCMR-120022259
[6] O. J. Rider, J. M. Francis, M. K. Ali, et al., “Determinants of Left Ventricular Mass in Obesity; A Cardiovascular Magnetic Resonance Study,” Journal of Cardiovascular Magnetic Resonance, Vol. 11, No. 1, 2009, p. 9. doi:10.1186/1532-429X-11-9
[7] I. De Scheerder, C. Cuvelier, R. Verhaaren, M. De Buyzere, G. De Backer and D. Clement, “Restrictive Cardiomyopathy Caused by Adipositas Cordis,” European Heart Journal, Vol. 8, No. 6, 1987, pp. 661-663.
[8] S. Kenchaiah, J. C. Evans, D. Levy, et al., “Obesity and the Risk of Heart Failure,” The New England Journal of Medicine, Vol. 347, 2002, pp. 305-313. doi:10.1056/NEJMoa020245
[9] A. M. Balsaver, A. R. Morales and F. W. Whitehouse, “Fat Infiltration of Myocardium as a Cause of Cardiac Conduction Defect,” American Journal of Cardiology, Vol. 19, No. 2, 1967, pp. 261-265. doi:10.1016/0002-9149(67)90543-7
[10] W. B. Kannel, J. F. Plehn and L. A. Cupples, “Cardiac Failure and Sudden Death in the Framingham Study,” American Heart Journal, Vol. 115, No. 4, 1988, pp. 869-875. doi:10.1016/0002-8703(88)90891-5
[11] C. J. Lavie, A. F. Osman, R. V. Milani and M. R. Mehra, “Body Composition and Prognosis in Chronic Systolic Heart Failure: The Obesity Paradox,” American Journal of Cardiology, Vol. 91, No. 7, 2003, pp. 891-894. doi:10.1016/S0002-9149(03)00031-6
[12] S. M. Grundy, H. B. Brewer Jr., J. I. Cleeman, S. C. Smith Jr. and C. Lenfant, “Definition of Metabolic Syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on Scientific Issues Related to Definition,” Circulation, Vol. 109, No. 3, 2004, pp. 433-438.
[13] K. M. Rexrode, V. J. Carey, C. H. Hennekens, et al., “Abdominal Adiposity and Coronary Heart Disease in Women,” Journal of the American Medical Association, Vol. 280, No. 21, 1998, pp. 1843-1848.
[14] C. S. Fox, J. M. Massaro, U. Hoffmann, et al., “Abdominal Visceral and Subcutaneous Adipose Tissue Compartments: Association with Metabolic Risk Factors in the Framingham Heart Study,” Circulation, 2007, Vol. 116, No. 1, pp. 39-48.
[15] S. Yusuf, S. Hawken, S. Ounpuu, et al., “Obesity and the Risk of Myocardial Infarction in 27,000 Participants from 52 Countries: A Case-Control Study,” Lancet, Vol. 366, No. 9497, 2005, pp. 1640-1649.
[16] G. Iacobellis, M. C. Ribaudo, F. Assael, et al., “Echocardiographic Epicardial Adipose Tissue is Related to Anthropometric and Clinical Parameters of Metabolic Syndrome: A New Indicator of Cardiovascular Risk,” The Journal of Clinical Endocrinology & Metabolism, Vol. 88, No. 11, 2003, pp. 5163-5168. doi:10.1210/jc.2003-030698
[17] G. Iacobellis, F. Assael, M. C. Ribaudo, et al., “Epicardial Fat from Echocardiography: A New Method for Visceral Adipose Tissue Prediction,” Obesity Research, Vol. 11, No. 2, 2003, pp. 304-310. doi:10.1038/oby.2003.45
[18] R. Taguchi, J. Takasu, Y. Itani, et al., “Pericardial Fat Accumulation in Men as a Risk Factor for Coronary Artery Disease,” Atherosclerosis, Vol. 157, No. 1, 2001, pp. 203-209.
[19] G. A. Rosito, J. M. Massaro, U. Hoffmann, et al., “Pericardial Fat, Visceral Abdominal Fat, Cardiovascular Disease Risk Factors, and Vascular Calcification in a Community-Based Sample: The Framingham Heart Study,” Circulation, Vol. 117, No. 5, 2008, pp. 605-613.
[20] A. A. Mahabadi, J. M. Massaro, G. A. Rosito, et al., “Association of Pericardial Fat, Intrathoracic Fat, and Visceral Abdominal Fat with Cardiovascular Disease Burden: The Framingham Heart Study,” European Heart Journal, 2009, Vol. 30, No. 7, pp. 850-856. doi:10.1093/eurheartj/ehn573
[21] S. G. Myerson, H. E. Montgomery, M. J. World and D. J. Pennell, “Left Ventricular Mass: Reliability of M-Mode and 2-Dimensional Echocardiographic Formulas,” Hypertension, Vol. 40, No. 5, 2002, pp. 673-678.
[22] S. Fluchter, D. Haghi, D. Dinter, et al., “Volumetric Assessment of Epicardial Adipose Tissue with Cardiovascular Magnetic Resonance Imaging,” Obesity (Silver Spring), 2007, Vol. 15, No. 4, pp. 870-878.
[23] A. J. Nelson, M. I. Worthley, P. J. Psaltis, et al., “Validation of Cardiovascular Magnetic Resonance Assessment of Pericardial Adipose Tissue Volume,” Journal of Cardiovascular Magnetic Resonance, Vol. 11, 2009, p. 15. doi:10.1186/1532-429X-11-15
[24] P. E. O’Brien, J. B. Dixon, W. Brown, et al., “The Laparoscopic Adjustable Gastric Band (Lap-Band): A Prospective Study of Medium-Term Effects on Weight, Health and Quality of Life,” Obesity Surgery, Vol. 12, No. 5, 2002, pp. 652-660.
[25] A. E. Chapman, G. Kiroff, P. Game, et al., “Laparoscopic Adjustable Gastric Banding in the treatment of Obesity: A Systematic Literature Review,” Surgery, Vol. 135, No. 3, 2004, pp. 326-351.
[26] A. F. Dixon, J. B. Dixon, P. E. O’Brien, “Laparoscopic Adjustable Gastric Banding Induces Prolonged Satiety: A Randomized Blind Crossover Study,” The Journal of Clinical Endocrinology & Metabolism, Vol. 90, No. 2, 2005, pp. 813-819. doi:10.1210/jc.2004-1546
[27] W. S. Snyder, E. S. Nasset, L. R. Karhausen and G. P. Howells, “Report of the Task Group on Reference Man, International Comission on Radiological Protection,” Pergamon Press, Oxford, 1975.
[28] J. Shirani, K. Berezowski and W. C. Roberts, “Quantitative Measurement of Normal and Excessive (Coradiposum) Subepicardial Adipose Tissue, Its Clinical Significance, and Its Effect on Electrocardiographic QRS Voltage,” American Journal of Cardiology, Vol. 76, No. 5, 1995, pp. 414-418. doi:10.1016/S0002-9149(99)80116-7
[29] D. Corradi, R. Maestri, S. Callegari, et al., “The Ventricular Epicardial Fat is Related to the Myocardial Mass in Normal, Ischemic and Hypertrophic Hearts,” Cardiovascular Pathology, Vol. 13, No. 6, 2004, pp. 313-316.
[30] G. Iacobellis, N. Singh, S. Wharton and A. M. Sharma, “Substantial Changes in Epicardial Fat Thickness after Weight Loss in Severely Obese Subjects,” Obesity (Silver Spring), Vol. 16, No. 7, 2008, pp. 1693-1697.
[31] H. J. Willens, P. Byers, J. A. Chirinos, E. Labrador, J. M. Hare and E. de Marchena, “Effects of Weight Loss after Bariatric Surgery on Epicardial Fat Measured Using Echocardiography,” The American Journal of Cardiology, Vol. 99, No. 9, 2007, pp. 1242-1245. doi:10.1016/j.amjcard.2006.12.042
[32] G. L. Vega, B. Adams-Huet, R. Peshock, D. Willett, B. Shah and S. M. Grundy, “Influence of Body Fat Content and Distribution on Variation in Metabolic Risk,” The Journal of Clinical Endocrinology & Metabolism, Vol. 91, No. 11, 2006, pp. 4459-4466. doi:10.1210/jc.2006-0814
[33] K. M. Pou, J. M. Massaro, U. Hoffmann, et al., “Visceral and Subcutaneous Adipose Tissue Volumes Are Cross- Sectionally Related to Markers of Inflammation and Oxidative Stress: The Framingham Heart Study,” Circulation, Vol. 116, No. 11, 2007, pp. 1234-1241.
[34] H. S. Sacks and J. N. Fain, “Human Epicardial Adipose Tissue: A Review,” American Heart Journal, Vol. 153, No. 6, 2007, pp. 907-917. doi:10.1016/j.ahj.2007.03.019
[35] J. Ding, S. B. Kritchevsky, T. B. Harris, et al., “The Association of Pericardial Fat with Calcified Coronary Plaque,” Obesity (Silver Spring), Vol. 16, No. 8, 2008, pp. 1914-1919. doi:10.1038/oby.2008.278
[36] G. Iacobellis, “Epicardial and Pericardial Fat: Close, but Very Different,” Obesity (Silver Spring), Vol. 17, No. 4, 2009, pp. 626-627.
[37] G. Iacobellis and H. J. Willens, “Echocardiographic Epicardial Fat: A Review of Research and Clinical Applications,” Journal of the American Society of Echocardiography, Vol. 22, No. 12, 2009, pp. 1311-1319. doi:10.1016/j.echo.2009.10.013
[38] G. Iacobellis, H. J. Willens, G. Barbaro, A. M. Sharma, “Threshold Values of High-Risk Echocardiographic Epicardial Fat Thickness,” Obesity (Silver Spring), Vol. 16, 2008, pp. 887-892.
[39] G. Iacobellis and F. Leonetti, “Epicardial Adipose Tissue and Insulin Resistance in Obese Subjects,” The Journal of Clinical Endocrinology & Metabolism, Vol. 90, No. 11, 2005, pp. 6300-6302. doi:10.1210/jc.2005-1087
[40] G. Iacobellis, A. M. Pellicelli, A. M. Sharma, B. Grisorio, G. Barbarini and G. Barbaro, “Relation of Subepicardial Adipose Tissue to Carotid Intima-Media Thickness in Patients with Human Immunodeficiency Virus,” American Journal of Cardiology, Vol. 99, No. 10, 2007, pp. 1470- 1472. doi:10.1016/j.amjcard.2006.12.082

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.