Tissue Engineered Osteogenesis in Bone Defects by Homologous Osteoblasts Loaded on Sterile Bioresorbable Coral Scaffold in Rabbits

Abstract

Objectives: This study explores feasibility of tissue-engineered osteogenesis using sterile coral implants loaded with homologous osteoblasts to repair bone defects. Study Design: A unilateral 4 mm transverse dis- continuity defect was produced approximately mid-way along left radius of young female rabbits using ro- tary diamond disc under continuous saline irrigation and stabilised with autoclaved steel miniplate and screws. The defect was then fitted with sterile bioresorbable coral implant loaded with homologous neonatal calvarial osteoblasts or control implants without osteoblasts. All animals underwent radiography immedi- ately post-operative, at weekly intervals for four weeks and at fortnightly intervals thereafter. Operated bones were histologically evaluated for osteogenesis at 12 weeks. Results: Findings demonstrate osteogenesis and complete repair of bioresorbable coral implant by homologous osteoblasts loaded on coral scaffold. Conclu- sions: Single stage surgery using this technique to induce osteogenesis and closure of discontinuity bone de- fects including palatal clefts and peripheral reduction of large craniofacial defects might prove better thera- peutic modality than autologous bone grafting or tissue distraction osteogenesis.

Share and Cite:

A. Tripathi, P. Murthy, G. Keshri and M. Singh, "Tissue Engineered Osteogenesis in Bone Defects by Homologous Osteoblasts Loaded on Sterile Bioresorbable Coral Scaffold in Rabbits," Surgical Science, Vol. 2 No. 7, 2011, pp. 369-375. doi: 10.4236/ss.2011.27081.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Laitinen, J. Hardes, H. Ahrens, C. Gebert, B. Leidinger, et al., “Treatment of Primary Malignant Bone Tumours of the Distal Tibia,” International Orthopaedics, Vol. 29, No. 4, 2005, pp. 255-259. doi:10.1007/s00264-005-0656-4
[2] C. J. Damien and J. R. Parsons, “Bone Graft and Bone Graft Substitutes: A Review of Current Technology and Applications,” Journal of Applied Biomaterials, Vol. 2, No. 3, 1991, pp. 187-208. doi:10.1002/jab.770020307
[3] P. Castellon and R. A. Yukna, “Immediate Dental Implant Placement in Sockets Augmented with HTR Synthetic Bone,” Implant Dentistry, Vol. 13, No. 1, 2004, pp. 42-48. doi:10.1097/01.ID.0000116451.04676.7B
[4] H. Sun, Z. Qu, Y. Guo, G. Zang and B. Yang, “In vitro and in vivo Effects of Rat Kidney Vascular Endothelial Cells on Osteogenesis of Rat Bone Marrow Mesenchymal Stem Cells Growing on Polylactide-Glycoli Acid Scaffolds,” BioMedical Engineering Online, Vol. 6, 2007, p. 41. doi:10.1186/1475-925X-6-41
[5] J. T. Schantz, S. H. Teoh, T. C. Lim, M. Endres, C. X. Lam, et al., “Repair of Calvarial Defects with Customized Tissue-Engineered Bone Grafts I. Evaluation of Osteogenesis in 3-Dimensional Culture System,” Tissue Engineering, Vol. 9, Supplement 1, 2003, pp. S113-S126. doi:10.1089/10763270360697021
[6] D. W. Hutmacher and A. J. Garcia, “Scaffold-Based Bone Engineering by Using Genetically Modified Cells,” Gene, Vol. 347, No. 1, 2005, pp. 1-10.
[7] C. Demers, C. R. Hamdy, K. Corsi, F. Chellat, M. Tabrizian, et al., “Natural Coral Exoskeleton as a Bone Graft Substitute: A Review,” Bio-Medical Materials and Engineering, Vol. 12, No. 1, 2002, pp. 15-35.
[8] J. C. Fricain, J. Alouf, R. Bareille, F. Rouais and J. L. Rouvillain, “Cytocompatibility Study of Organic Matrix Extracted from Caribbean Coral Porites astroides,” Biomaterials, Vol. 23, No. 3, 2002, pp. 673-679.
[9] L. Gepstein, “Derivation and Potential Applications of Human Embryonic Stem Cells,” Circulation Research, Vol. 91, No. 10, 2002, pp. 866-876. doi:10.1161/01.RES.0000041435.95082.84
[10] M. E. Owen, J. Cave and C. J. Joyner, “Clonal Analysis in Vitro of Osteogenic Differentiation of Marrow CFUF,” Journal of Cell Science, Vol. 87, No. 5, 1987, pp. 731-738.
[11] H. Petite, V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, et al., “Tissue Engineered Bone Regeneration,” Nature Biotechnology, Vol. 18, No. 9, 2000, pp. 959-963. doi:10.1038/79449
[12] G. Bahadur, “Ethics of Testicular Stem Cell Medicine,” Human Reproduction, Vol. 19, No. 12, 2004, pp. 2702-2710. doi:10.1093/humrep/deh538
[13] J. Glowacki and J. B. Mulliken, “Demineralised Bone Implants,” Tissue Engineering, Vol. 11, Supplement 4, 2005, pp. 5113-5126.
[14] N. J. Horwood, J. Elliott, T. J. Martin and M. T. Gillespie, “Osteotropic Agents Regulate the Expression of Osteoclast Differentiation Factor and Osteoprotegerin in Osteoblastic Stromal Cells,” Endocrinology, Vol. 139, No. 11, 1998, pp. 4743-4746.
[15] R. Maurya, G. Singh, D. K. Yadav, B. Biju, P. S. N. Murthy, et al., “Osteogenic Activity of Constituents From Butea Monosperma,” Bioorganic Medicinal Chemistry Letters, Vol. 19, No. 3, 2008, pp. 610-613. doi:10.1016/j.bmcl.2008.12.064
[16] G. L. Wong and D. V. Cohn, “Target Cells in Bone for Parathormone and Calcitonin Are Different: Enrichment for Each Cell Type by Sequential Digestion of Mouse Calvaria and Selective Adhesion to Polymeric Surfaces,” Proceedings of the National Academy of Sciences, Vol. 72, No. 8, 1995, pp. 3167-3171. doi:10.1073/pnas.72.8.3167
[17] R. Fossaceca, M. Di Terlizzi, A. Stecco, L. Canalis, F. Travaglini, et al., “MRI Post-Vertebroplasty,” La Radiologia Medica, Vol. 112, No. 2, 2007, pp. 185-194. doi:10.1007/s11547-007-0134-8
[18] F. R. Rose and R. O. Oreffo, “Bone Tissue Engineering: Hope vs Hype,” Biochemical Biophysical Research Communications, Vol. 292, No. 1, 2002, pp. 1-7. doi:10.1006/bbrc.2002.6519
[19] J. Y. Huh, B. H. Choi, B. Y. Kim, S. H. Lee, S. J. Zhu, et al., “Critical Size Defect in the Canine Mandible,” Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology, Vol. 100, No. 3, 2005, pp. 296-301.
[20] T. Kawata, S. Kohno, T. Fujita, H. Sugiyama, C. Tokimasa, et al., “New Biomaterials and Methods for Craniofacial Bone Defect: Chondroid Bone Grafts in Maxillary Alveolar Clefts,” Journal of Craniofacial and Genetics Developmental Biology, Vol. 20, No. 2, 2000, pp. 49-52.
[21] G. Lisignoli, M. Fini, G. Giavaresi, A.N. Nicoli, S. Tonneguzzi, et al., “Osteogenesis of Larger Segmental Radius Defects Enhanced by Basic Fibroblast Growth Factor Activated Bone Marrow Stromal Cells Grown on Non-Woven Hyaluronic Acid-Based Polymer Scaffold,” Biomaterials, Vol. 23, No. 4, 2002, pp. 1043-1051.
[22] A. K. Gosain, P. A. Riordon, L. Song, M. T. Amarante, B. Kalantarian, et al., “A 1-Year Study of Osteoinduction in Hydroxyapatite-Derived Biomaterials in an Adult Sheep Model: Part II. Bioengineering Implants to Optimize Bone Replacement in Reconstruction of Cranial Defects,” Plastic and Reconstructive Surgery, Vol. 114, No. 5, 2004, pp. 1155-1163. doi:10.1097/01.PRS.0000135852.45465.A9
[23] S. Kadiyala, N. Jaiswal and S Bruder, “Culture Expanded Bone Marrow-Derived Mesenchymal Stem Cells Can Regenerate a Critical Sized Segmental Bone Defect,” Tissue Engineering, Vol. 3, No. 2, 1997, pp. 173-185. doi:10.1089/ten.1997.3.173
[24] M. B. Nair, H. K. Varma, K. V. Menon, S. J. Shenoy and A. John, “Tissue Regeneration and Repair of Goat Segmental Femur Defect with Bioactive Triphasic Ceramic-Coated Hydroxyapatite Scaffold,” Journal of Biomedical Materials Research, Part A, Vol. 91A, No. 3, 2008, pp. 855-865. doi:10.1002/jbm.a.32239
[25] F. Chen, S. Chen, K. Tao, X. Feng, Y. Liu, et al., “Marrow-derived osteoblasts seeded into porous natural coral to prefabricate a vascularised bone graft in the shape of a human Mandibular ramus: Experimental study in rabbits,” British Journal of Oral and Maxillofacial Surgery, Vol. 42, 2004, 532-537.
[26] K. A. Al-Salihi and A. R. Samsuddin, “Bone Marrow Mesenchymal Stem Cells Differentiation and Proliferation on The Surface of Coral Implants,” Medical Journal of Malaysia, Vol. 59, Supplement B, 2004, pp. 200-201.
[27] G. Guillemin, “Comparison of Coral Resorption and Bone Apposition with Two Natural Corals of Different Porosities,” Journal of Biomedical Materials Research, Vol. 23, No. 7, 1989, pp. 765-779. doi:10.1002/jbm.820230708
[28] Y. Wang, T. Uemura, J. Dong, H. Kojima, J. Tanaka, et al., “Application of Perfusion Culture System Improves in Vitro and in Vivo Osteogenesis of Bone Marrow-Derived Osteoblastic Cells in Porous Ceramic Materials,” Tissue Engineering, Vol. 9, 2003, pp. 1205-1214. doi:10.1089/10763270360728116
[29] J. T. Schantz, S. H. Teoh, T. C. Lim, M. Endres, C. X. Lam, et al., “Repair of Calvarial Defects with Customised Tissue-Engineered Bone Grafts I. Evaluation of Osteogenesis in a 3-Dimensional Culture System,” Tissue Engineering, Vol. 9, Supplement 1, 2003, pp. S113-S126. doi:10.1089/10763270360697021
[30] C. Fergusson, E. Alpern, T. Miclau and J. A. Helms, “Does Adult Fracture Repair Recapitulate Embryonic Skeletal Formation?” Mechanisms of Development, Vol. 87, No. 1-2, 1999, pp. 57-66. doi:10.1016/S0925-4773(99)00142-2
[31] Y. Khan, M. J. Yaszemski, A. G. Mikos and C. T. Laurencin, “Tissue Engineering of Bone: Material and Matrix Considerations,” Journal of Bone and Joint Surgery, American, Vol. 90, Supplement 1, 2008, pp. 36-42. doi:10.2106/JBJS.G.01260

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.