Application of in-house method for determinationof radium isotopes in environmental samples usingthe Liquid Scintillation counting technique
Nik Azlin Nik Ariffin, Zal Uyun Wan Mahmood, Che Abd Rahim Mohamed
.
DOI: 10.4236/jasmi.2011.11001   PDF         3,932 Downloads   11,030 Views   Citations

Abstract

A method for determination of 226Ra and 228Ra in environmental samples using the α-β coincidence liquid scintillation counting (LSC) has been developed. Radium were preconcentrated from environmental samples by coprecipitation with BaSO4, then purified from others radionuclide interferences using the cation column exchange (Bio-Rad AG 50 W-X4 resin with 200-400 mesh size and H+ form) and operating in warm temperature which is between 70-80oC. Then, the Ba(Ra)SO4 precipitate was filtered through the Millipore filter paper, dried and weighed to calculate chemical yield. The activity concentration of radium isotopes in mixture of liquid scintillation cocktails were measured using LSC after being stored for over 21 days to allow the growth of the progeny nuclides. The method has been validated with a certi-fied reference material supplied by the International Atomic Energy Agency and reliable results were obtained. The radiochemical yields for radium were 59% - 90% and recovery was 97% and 80% for 226Ra and 228Ra, respectively. Sixteen seawater and fish flesh samples collected in Kapar coastal water have been analyzed with the developed method. The obtained radium activity concentrations in seawater were in the range of 02.08 ± 0.82 mBq/L to 3.69 ± 1.29 mBq/L for 226Ra and 6.01 ± 3.05 mBq/L to 17.07 ± 6.62 mBq/L for 228Ra. Meanwhile, the activity concentrations of 226Ra and 228Ra in fish flesh were in the range of 11.82 ± 5.23 – 16.53 ± 6.53 Bq/kg dry wt. and 43.52 ± 16.34 – 53.57 ± 19.86 Bq/kg dry wt., respectively.

Share and Cite:

N. Ariffin, Z. Mahmood and C. Mohamed, "Application of in-house method for determinationof radium isotopes in environmental samples usingthe Liquid Scintillation counting technique," Journal of Analytical Sciences, Methods and Instrumentation, Vol. 1 No. 1, 2011, pp. 1-8. doi: 10.4236/jasmi.2011.11001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. J. Rodr?′gez-Alvarez and F. Sa′nchez, “Measurement of Radium and Thorium Isotopes in Environmental Sam- ples by Alpha-Spectrometry,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 191, No. 1, 1995, pp. 3-13. doi:10.1007/BF02035979
[2] M. T. Crespo, “On the Determination of 226Ra in Envi- ronmental and Geological Samples by Alpha-Spectrome- try Using 225Ra as Yield Tracer,” Applied Radiation Iso- topes, Vol. 53, No. 1-2, 2000, pp. 109-114. doi:10.1016/S0969-8043(00)00120-2
[3] D. A. Clifford and E. A. Higgins, “Measurement of 226Ra and 228Ra in Water by Gamma-Ray Counting after Pre-Concentration on Ion-Exchange Resin,” Health Physics, Vol. 62, No. 5, 1992, pp. 413-421. doi:10.1097/00004032-199205000-00005
[4] J. P. Bolívar, R. García-Tenorio and M. García-León, “Radioactive Impact of Some Phosphogypsum Piles in Soils and Salt Marshes Evaluated by Gamma-Ray Spectrometry,” Applied Radiation Isotopes, Vol. 47, No. 9-10, 1996, pp. 1069-1075. doi:10.1016/S0969-8043(96)00108-X
[5] S. N. A. Tahir, K. Jamil, J. H. Zaidi, M. Arif, N. Ahmed and S. A. Ahmad, “Measurements of Activity Concentra- tions of Naturally Occurring Radionuclides in Soil Samples from Punjab Province of Pakistan and Assessment of Radiological Hazards,” Radiation Protection Dosimetry, Vol. 113, No. 4, 2005, pp. 421-427. doi:10.1093/rpd/nch484
[6] R. Blackburn and M. S. Al-Masri, “Determination of Radon-222 and Radium-226 in Water Samples by Cerenkov Counting,” Analyst, Vol. 118, No. 7, 1993, pp. 873-876. doi:10.1039/an9931800873
[7] F. Scho¨nhofer, “Measurement of 226Ra in Water and 222Rn in Water and Air by Liquid Scintillation Counting,” Radiation Protection Dosimetry, Vol. 45, 1992, pp. 123-125.
[8] H. Moreno, I. Vioque, G. Manjon and R. Garcia-Tenorio, “An Easy Method for Ra-226 Determination in River Waters by Liquid-Scintilation Counting Czech,” Journal of Physics, Vol. 49, No. 1, 1999, pp. 467-472.
[9] S. Chalupnik and J. Lebecka, “Determination of Radium Isotopes in Liquids by Means of Quantulus Liquid Scintillation Spectrometer,” Paper Presented at the 14th Europhysics Conference on Nuclear Physics, Bratislava Singapore, World Scientific, Vol. 327, 1990, pp. 327-336.
[10] S. Chalupnik and J. Lebecka, “Determination of 226Ra, 228Ra and 224Ra in Water and Aqueous Solutions by Liquid Scintillation Counting,” Proceedings of Liquid Scintillation Conference on Radiocarbon, Vienna, 14-18 September 1992, pp. 397-403.
[11] K. Sato, T. Hashimoto, M. Noguchi, W. Nitta, H. Higuchi, N. Nishikawa and T. Sanada, “A Simple Method for Determination of 226Ra in Environmental Samples by α-β Coincidence Liquid Scintillation Counting,” Journal of Environmental Radioactivity, Vol. 48, No. 2, 2000, pp. 247-256. doi:10.1016/S0265-931X(99)00073-9
[12] Y. J. Kim, C. K. Kim and J. I. Lee, “Simultaneous Determination of 226Ra and 210Pb in Groundwater and Soil Samples by Using Liquid Scintillation Counter―Suspension Gel,” Journal of Radiation and Isotopes, Vol. 54, No. 2, 2001, pp. 275-281. doi:10.1016/S0969-8043(00)00190-1
[13] M. Villa, H. P. Moreno and G. Manjón, “Determination of 226Ra and 224Ra in Sediments Samples by Liquid Scintillation Counting,” Journal of Radiation Measurement, Vol. 39, 2005, pp. 543-550.
[14] N. Antovic and N. Svrkota, “Measuring the Radium-226 Activity Using a Multidetector G-Ray Coincidence Spectrometer,” Journal of Environmental Radioactivity, Vol. 100, No. 10, 2009, pp. 823-830. doi:10.1016/j.jenvrad.2009.06.003
[15] W. C. Lawrie, J. A. Desmond, D. Spence, S. Anderson and C. Edmondson, “Determination of Radium-226 in Environmental and Personal Monitoring Samples,” Applied Radiation Isotopes, Vol. 53, No. 1-2, 2000, pp. 133-137. doi:10.1016/S0969-8043(00)00168-8
[16] G. J. Hancock and P. Martin, “Determination of Ra in Environmental Samples by α-Spectrometry,” Applied Radiation Isotopes, Vol. 42, No. 1, 1991, pp. 63-69. doi:10.1016/0883-2889(91)90125-K
[17] J. S. Alvarado, K. A. Orlamdini and M. D. Erickson, “Rapid Determination of Radium Isotopes by Alpha Spectrometry,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 194, No. 1, 1995, pp. 163-172. doi:10.1007/BF02037623
[18] S. Ghose, M. Alam and M. N. Islam, “Concentrations of 222Rn, 226Ra and 228Ra in Surface Seawater of the Bay of Bengal,” Journal of Environmental Radioactivity, Vol. 47, No. 3, 2000, pp. 291-300. doi:10.1016/S0265-931X(99)00046-6
[19] J. Eikenberg, S. Bajo, H. Beer, J. Hitz, M. Ruethi, I. Zumsteg and P. Letessier, “Fast Methods for Determination of Anthropogenic Actinides and U/Th-Series Isotopes in Aqueous Samples,” Applied Radiation Isotopes, Vol. 61, No. 2-3, 2004, pp. 101-106. doi:10.1016/j.apradiso.2004.03.020
[20] T. Hashimoto, K. Sato, Y. Yoneyama and N. Fukuyama, “Simultaneous Determination of Environmental Samples α-Radionuclides Using Liquid Scintillation Counting Combined with Tome Interval Analysis (TIA) and Pulse Shape Discrimination (PSD),” Journal of Radioanalytical and Nuclear Chemistry, Vol. 222, No. 1-2, 1997, pp. 109-116. doi:10.1007/BF02034256
[21] H. Homma and Y. Murakami, “Study on the Applicability of the Integral Counting Method for Determination of 226Ra in Various Sample Forms Using a Liquid Scintillation Counter,” Journal of Radioanalytical Chemistry, Vol. 36, No. 1, 1977, pp. 173-184. doi:10.1007/BF02516265
[22] G. Manjón, I. Vioque, H. P. Moreno, , R. García-Tenorio and M. García-León, “Determination of 226Ra and 224Ra in Drinking Waters by Liquid Scintillation Counting,” Applied Radiation Isotopes, Vol. 48, No. 4, 1997, pp. 535-540. doi:10.1016/S0969-8043(96)00297-7
[23] H. P. Moreno, A. Absi, I. Vioque, G. Manjón and R. García-Tenorio, “Application of a Liquid Scintillation Technique to the Measurement of 226Ra and 224Ra in Samples Affected by Nonnuclear Industries Wastes,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 245, No. 2, 2000, pp. 309-315. doi:10.1023/A:1006706320580
[24] J. M. Godoy, “Methods for Measuring Radium Isotopes: Gross Alpha Beta Counting. The Environmental Behavior of Radium,” Vienna International Atomic Energy Agency, Vol. 1, 1990, pp. 205-212.
[25] G. Jia, G. Torri, P. Innocenzi, R. Ocone and A. Di Lullo, “Determination of Radium Isotopes in Mineral and Environmental Water Samples by Alpha-Spectrometry,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 267, No. 3, 2006, pp. 505-514. doi:10.1007/s10967-006-0079-8
[26] R. A. Tinker, J. D. Smith and M. B. Cooper, “An Assessment of Selection Criteria for an Analytical Method for Radium-226 in Environmental Samples,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 193, No. 2, 1995, pp. 173-176. doi:10.1007/BF02039890
[27] C. A. R. Mohamed, S. Y. Niow, M. A. Masni and A. Zaharudin, “Measurement Ratio of 226Ra/228Ra in Marine Samples Using the Cation Exchange Resin and Gross α/β Spectrometry,” Asian Journal of Chemistry, Vol. 19, No. 2, 2007, pp. 1035-1044.
[28] S. Y. Nioo, Z. Ahmad and C. A. R. Mohamed, “Pencirian Aktiviti 226Ra dan 228Ra Dalam Sistem Sungai, Muara dan Marin di Malaysia,” Thesis Master UKM, Malaysia, 2005.
[29] C. S. Phuah, Z. Ahmad and C. A. R. Mohamed, “Taburan Keaktifan Ra-226 dan Ra-228 Dalam Sistem Marin di Semenanjung Malaysia,” Thesis Master UKM, Malaysia, 2001.
[30] J. A. Breier and H. N. Edmonds, “High 226Ra and 228Ra Activities in Nueces Bay, Texas Indicate Large Submarine Saline Discharge,” Marine Chemistry, Vol. 103, No. 1-2, 2007, pp. 131-145. doi:10.1016/j.marchem.2006.06.015
[31] D. W. Hwang, G. Kim, Y. W. Lee and H. S. Yang, “Estimating Submarine Inputs of Groundwater and Nutrients to a Coastal Bay Using Radium Isotopes,” Marine Chemistry, Vol. 96, No. 1-2, 2005, pp. 61-71. doi:10.1016/j.marchem.2004.11.002
[32] J. S. Lee, K. H. Kim and D. S. Moon “Radium in Ulsan Bay,” Journal of Environmental Radioactivity, Vol. 82, No. 2, 2005, pp. 129-149. doi:10.1016/j.jenvrad.2004.11.005
[33] H. S. Yang, D. W. Hwang and G. Kim, “Factors Controlling Excess Radium in the Nakdong River Estuary, Korea: Submarine Groundwater Discharge versus Desorption Riverine Particles,” Marine Chemistry, Vol. 78, No. 1, 2002, pp. 1-8. doi:10.1016/S0304-4203(02)00004-X
[34] Y. Nozaki, Y. Yamamoto, T. Manaka, H. Amakawa and A. Snidvongs, “Dissolved Barium and Radium Isotopes in Chao Phraya Estuarine Mixing Zone in Thailand,” Continental Shelf Research, Vol. 21, No. 13-14, 2001, pp. 1435-1448. doi:10.1016/S0278-4343(01)00023-1
[35] Y. Nozaki and Y. Yamamoto, “228Ra-Based Nitrate Fluxes in Eastern India Ocean and the South China Sea and a Silicon-Induced ‘Alkalinity Pump’ Hypothesis,” Global Biogeochemical Cycles, Vol. 15, No. 3, 2001, pp. 555-567. doi:10.1029/2000GB001309
[36] J. M. Krest, W. S. Moore and Rama, “226Ra and 228Ra in the Mixing Zones of Mississippi and Atchafalaya Rivers: Indicators of Groundwater Input,” Marine Chemistry, Vol. 64, No. 3, 1999, pp. 129-152. doi:10.1016/S0304-4203(98)00070-X
[37] W. S. Moore, “High Fluxes of Radium and Barium from the Mouth of the Ganges Brahmaputra River during Low river Discharge Suggest Large Groundwater Source,” Earth and Planetary Science Letters, Vol. 150, No. 1-2, 1997, pp. 141-150. doi:10.1016/S0012-821X(97)00083-6

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.