Effect of Hot Accumulative Roll Bonding Process on the Mechanical Properties of AA5083
Hassan Sheikh, Ebrahim Paimozd
.
DOI: 10.4236/ojmetal.2011.11002   PDF    HTML     5,719 Downloads   13,937 Views   Citations

Abstract

In this work, accumulative roll bonding (ARB) process as a severe plastic deformation was applied on an AA5083 sheet up to 6 cycles at the temperature of 300℃ and at the strain rate of 50 s­‐1. The results of tensile tests show that the values of the yield stress and the ultimate tensile strength don't change considerably after 4 cycles. Also, transmission electron microscopy (TEM) micrograph confirmed that the microstructure has fine (sub) grains with the size of 200 nm - 400 nm.

Share and Cite:

H. Sheikh and E. Paimozd, "Effect of Hot Accumulative Roll Bonding Process on the Mechanical Properties of AA5083," Open Journal of Metal, Vol. 1 No. 1, 2011, pp. 12-15. doi: 10.4236/ojmetal.2011.11002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. B. Prangnell, J. R. Bowen and A. Gholinia, “The Formation of Submicron and Nanocrystalline Grain Structure by Severe Deformation,” Proceedings of the 22nd Ris?′ International Symposium on Materials Science, Roskilde, 2001, pp. 105-126.
[2] Y. S. Kim, S. H. Kang and D. H. Shin, “Effect of Rolling Direction on the Microstructure and Mechanical Properties of Accumulative Roll-Bonding (ARB) Processed Commercially Pure 1050 Aluminum Alloy,” Materials Science Forum, Vol. 503-504, 2006, pp. 681-686. doi:10.4028/www.scientific.net/MSF.503-504.681
[3] K. F. Zhang and H. H. Yan, “Deformation Behavior of Fine-Grained 5083 Al Alloy at Elevated Temperature,” Transactions of Non-ferrous Metals Society of China,Vol. 19, 2009, pp. 307-311. doi:10.1016/S1003-6326(10)60060-X
[4] J. Lee and H. Seok, “Microstructural Evolutions of the Al strip Prepared by Cold Rolling and Continuous Equal Channel Angular Pressing,” Acta Materialia, Vol. 50, 2002, pp. 4005-4019. doi:10.1016/S1359-6454(02)00200-8
[5] R. K. Islamgaliev, N. F. Yunusova, R. Z. Valiev, N. K. Tsenev, V. N. Perevezent-sev and T. G. Langdon, “Characteristics of Superplasticity in an Ultrafine-Grained Aluminum Alloy Processed by ECA Pressing,” Scripta Materialia, Vol. 49, 2003, pp. 467-472. doi:10.1016/S1359-6462(03)00291-4
[6] Y. Saito, H. Utsu-nomiya, N. Tsuji and T. Sakai, “Novel Ultra-High Straining Process for Bulk Materials Development of the Accumulative Roll-Bonding (ARB) Process,” Acta Materialia, Vol. 47, 1999, pp. 579-583. doi:10.1016/S1359-6454(98)00365-6
[7] N. Tsuji, Y. Saito, S. H. Lee and Y. Minamino, “ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials,” Advanced Engineering Materials, Vol. 5, 2003, pp. 338-344. doi:10.1002/adem.200310077
[8] X. Huang, N. Tsuji, N. Hansen and Y. Minamino, “Mi Crostructural Evolution During Accumulative Roll-Bond- ing of Commercial Purity Alumi-num,” Materials Science and Engineering: A, Vol. 340, 2003, pp. 265-271. doi:10.1016/S0921-5093(02)00182-X
[9] K. T. Park, J. H. Park, Y. S. Lee and W. J. Nam, “Comparison of Compressive Deformation of Ultrafine-Grain- ed 5083 Al Alloy at 77 and 298 K,” Metallurgical and Materials Transactions: A, Vol. 36, 2005, pp. 1365-1368. doi: 10.1007/s11661-005-0227-8
[10] K. T. Park, H. J. Kwon and W. J. Kim, “Microstructural Characteristics and Thermal Stability of Ultrafine Grained 6061 Al Alloy Fabricated by Accumulative Roll Bonding Process,” Materials Science and Engineering: A, Vol. 316, 2001, pp. 145-152. doi:10.1016/S0921-5093(01)01261-8
[11] K. T. Park, J. H. Park, Y. S. Lee and W. J. Nam, “Microstructures Developed by Compressive Deformation of Coarse Grained and Ultrafine Grained 5083 Al Alloys at 77 K and 298 K,” Materials Science and Engineering: A, Vol. 408, 2005, pp. 102-109. doi:10.1016/j.msea.2005.07.040

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.