L-Serine Decreases Taurine Concentration in the Extracellular Fluid of Brain Slices

Abstract

L-Serine is considered a functional amino acid in the central nervous system, and induces sedation and hypnotic effects in some animal models of acute and chronic stress. Accordingly, while L-serine is a candidate anti-stress factor, the central mechanism of L-serine is not clear. The present study clarifies the action of L-serine using acute chick brain slices. We investigated the changes in some extracellular fluid amino acid concentrations in response to L-serine perfusion. Taurine concentration decreased while L-alanine concentration increased following L-serine perfusion. To examine the involvement of the taurine transporter, the effect of L-serine on the taurine concentration in the presence and absence of Na+ was also investigated. Na+ had no effect on taurine concentration induced by L-serine perfusion. These results suggest that L-serine has an ability to promote L-alanine synthesis facilitating the catabolism of taurine. In conclusion, L-serine modifies the metabolism of taurine and L-alanine in the extracellular space in chick brain.

Share and Cite:

K. Shigemi, K. Tanaka, K. Hayamizu, D. Denbow and M. Furuse, "L-Serine Decreases Taurine Concentration in the Extracellular Fluid of Brain Slices," Neuroscience and Medicine, Vol. 2 No. 3, 2011, pp. 268-274. doi: 10.4236/nm.2011.23034.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Furuya, “An Essential Role for de Novo Biosynthesis of L-Serine in CNS Development,” Asia Pacific Journal of Clinical Nutrition, Vol. 17, Supplement, No. 1, 2008, pp. 312-315.
[2] J. Jaeken, M. Detheux, L. Van Maldergem, M. Foulon, H. Carchon and E.Van Schaftingen, “3-Phosphoglycerate Dehydrogenase Deficiency: An Inborn Error of Serine Biosynthesis,” Archives of Disease in Childhood, Vol. 74, No. 6, January 1996, pp. 542-545. doi:10.1136/adc.74.6.542
[3] T. J. de Koning, M. Duran, L. Van Maldergem, M. Pineda, L. Dorland, R. Gooskens, J. Jaeken, B. T. Poll-The, “Con- genital Microcephaly and Seizures Due to 3-Phospho- Glycerate Dehydrogenase Deficiency: Outcome of Treat- ment with Amino Acids,” Journal of Inherited Metabolic Disease, Vol. 25, No. 2, May 2002, pp. 119-125. doi:10.1023/A:1015624726822
[4] T. J. de Koning, L. W. Klomp, A. C. van Oppen, F. A. Beemer, L. Dorland, I. E. T. van den Berg and R. Berger, “Prenatal and Early Postnatal Treatment in 3-Phosphogly- Cerate-Dehydrogenase Deficiency,” Lancet, Vol. 364. No. 9452, December 2004, pp. 2221-2222.
[5] K. Yoshida, S. Furuya, S. Osuka, J. Mitoma, Y. Shinoda, M. Watanabe, N. Azuma, H. Tanaka, T. Hashikawa, S. Itohara and Y. Hirabayashi, “Targeted Disruption of the Mouse 3-Phosphoglycerate Dehydrogenase Gene Causes Severe Neurodevelopmental Defects and Results in Embryonic Lethality,” Journal of Biological Chemistry, Vol. 275, No. 5, January 2004, pp. 3573-3577.
[6] J. Mitoma, S. Furuya and Y. Hirabayashi, “A Novel Metabolic Communication between Neurons and Astrocytes: Non-Essential Amino Acid L-Serine Released from Astrocytes is Essential for Developing Hippocampal Neurons,” Neuroscience Research, Vol. 30, No. 2, February 1998, pp. 195-199. doi:10.1016/S0168-0102(97)00113-2
[7] M. Asechi M, S. Tomonaga, T. Tachibana, L. Han, K. Hayamizu, D. M. Denbow and M. Furuse, “Intracerebroventricular Injection of L-Serine Analogs and Derivatives Induces Sedative and Hypnotic Effects under an Acute Stressful Condition in Neonatal Chicks,” Behavioural Brain Research, Vol. 170, No. 1, June 2006, pp. 71-77. doi:10.1016/j.bbr.2006.02.005
[8] K. Shigemi, Y. Tsuneyoshi, S. Yamada, Y. Kabuki, K. Hayamizu, D. M. Denbow and M. Furuse, “Oral Administration of L-Serine Reduces the Locomotor Activity of Socially Isolated Rats,” Neuroscience Letters, Vol. 468, No. 1, January 2010, pp. 75-79. doi:10.1016/j.neulet.2009.10.068
[9] J. E. Antflick, G. B. Baker and D. R. Hampson, “The Effects of a Low Protein Diet on Amino Acids and Enzymes in the Serine Synthesis Pathway in Mice,” Amino Acids, Vol. 39, No. 1, June 2010, pp. 145-153. doi:10.1007/s00726-009-0387-8
[10] M. Lowry, D. E. Hall, M. S. Hall and J. T. Brosnan, “Renal Metabolism of Amino Acids in Vivo: Studies On Serine and Glycine Fluxes,” American Journal of Physiology, Vol. 252, No. 2, February 1987, pp. F304-F309.
[11] D. A. Fell and K. Snell, “Control Analysis Of Mammalian Serine Biosynthesis. Feedback Inhibition on the Final Step,” Biochemical Journal, Vol. 256, No. 1, November 1988, pp. 97-101.
[12] K. Snell and D. A. Fell, “Metabolic Control Analysis of Mam-Malian Serine Metabolism,” Advances in Enzyme Regulation, Vol. 30, 1990, pp. 13-32. doi:10.1016/0065-2571(90)90006-N
[13] J. F. Collet, V. Stroobant and E. V. Schaftingen, “Mechanistic Studies of Phosphoserine Phosphatase, an Enzyme Related to p-Type ATPases,” Journal of Biological Chemistry, Vol. 274, No. 48, November 1999, pp. 33985- 33990. doi:10.1074/jbc.274.48.33985
[14] J. E. Antflick, S. Vetiska, J. S. Baizer, Y. Yao, G. B. Baker and D. R. Hampson, “L-Serine-O-Phosphate in the Central Nervous System,” Brain Research, Vol. 1300, December 2009, pp. 1-13. doi:10.1016/j.brainres.2009.08.087
[15] A. Panatier, D. T. Theososis, J. P. Mothet, B. Touquet, L. Pollegioni, D. A. Poulain and S. H. R. Oliet, “Glia-Derived D-Serine Controls NMDA Receptor Activity and Synaptic Memory,” Cell, Vol. 125, No. 4, May 2006, pp. 775-784.
[16] K. Shigemi, Y. Tsuneyoshi, K. Hamasu, L. Han, K. Hayamizu, D. M. Denbow and M. Furuse, “L-Serine Induces Sedative and Hypnotic Effects Acting at GABAA Receptors in Neonatal Chicks,” European Journal of Pharmacology, Vol. 599, No. 1-3, December 2008, pp. 86-90. doi:10.1016/j.ejphar.2008.09.036
[17] N. Hájos and I. Mody, “Establishing a Physiological Environment for Visualized in Vitro Brain Slice Recordings by Increasing Oxygen Supply and Modifying aCSF Content,” Journal of Neuroscience Methods, Vol. 183, No. 2, October 2009, pp. 107-113. doi:10.1016/j.jneumeth.2009.06.005
[18] I. H. Lambert, “Regulation of the Cellular Content of the Organic Osmolyte Taurine in Mammalian Cells,” Neurochemical Research, Vol. 29. No. 1, January 2004, pp. 27- 63.
[19] Y. Noguchi, N. Shikata, Y. Furuhata, T. Kimura and M. Takahashi, “Characterization of Dietary Protein- Dependent Amino Acid Metabolism by Linking Free Amino Acids with Transcriptional Profiles Through Analysis of Correlation,” Physiological Genomics, Vol. 34, No. 3, August 2008, pp. 315-326. doi:10.1152/physiolgenomics.00007.2008
[20] J. Mauron, F. Mottu and G. Spohr, “Reciprocal induction and repression of Serine Dehydratase and Phosphoglycerate Dehydrogenase Bby Proteins and Dietary-Essential Amino Acids in Rat Liver,” European Journal of Biochemistry, Vol. 32, No. 2, January 1973, pp. 331-342. doi:10.1111/j.1432-1033.1973.tb02614.x
[21] Y. Achouri, M. Robbi and E. Van Schaftigen, “Role of Cysteine in the Dietary Control of the Expression of 3-Phosphoglycerate Dehydrogenase in Rat Liver,” Biochemical Journal, Vol. 344, November 1999, pp. 15-21.
[22] K. Nagao, M. Bannai, S. Seki, M. Mori and M. Takahashi, “Adaptational Modification of Serine and Threonine Metabolism in the Liver to Essential Amino Acid Deficiency in Rats,” Amino Acids, Vol. 36, No. 3, March 2009, pp. 555-562. doi:10.1007/s00726-008-0117-7
[23] K. Lund, D. K. Merrill and R. W. Guynn, “The Reactions of the Phosphorylated Pathway of L-Serine Biosynthesis: Thermodynamic Relationships in Rabbit Liver in Vivo,” Archives of Biochemistry and Biophysics, Vol. 237, No. 1, February 1985, pp. 186-196. doi:10.1016/0003-9861(85)90268-1
[24] R. W. Guynn, D. K. Merrill and K. Lund, “The Reactions of the Phosphorylated Pathway of L-Serine Biosynthesis: Thermodynamic Relationships in Rat Liver in Vivo,” Archives of Biochemistry and Biophysics, Vol. 245, No. 1, February 1986, pp. 204-211.
[25] H. H. Xue, M. Fujie, T. Sakaguchi, T. Oda, H. Ogawa, N. M. Kneer, H. A. Lardy and A. Ichiyama, “Flux of the L-Serine Metabolism in Rat Liver,” Journal of Biological Chemistry, Vol. 274, No. 23, June 1999, pp. 16020- 16027. doi:10.1074/jbc.274.23.16020
[26] I. Kurauchi, H. Yamane, Y. Tsuneyoshi, D. M. Denbow and M. Furuse, “Central L-Alanine Reduces Energy Expenditure with a Hypnotic Effect under an Acute Stressful Condition in Neonatal Chicks,” Amino Acids, Vol. 36, No. 1, January 2009, pp. 131-135. doi:10.1007/s00726-008-0042-9
[27] E. J. Peck and J. Awapara, “Formation of Taurine and Isethionic Acid in Rat Brain,” Biochimica et Biophysica Acta, Vol. 141, No. 3, August 1967, pp. 499-506.
[28] K. Yonaha, S. Toyama and K. Soda, “Taurine-Glutamate Tranaminase,” Methods in Enzymology, Vol. 113, 1985, pp. 102-108. doi:10.1016/S0076-6879(85)13023-5
[29] G. Shimamoto and R. S. Berk, “Catabolism of Taurine in Pseudomonas Aeruginosa,” Biochimica et Biophysica Acta, Vol. 569, No. 2, August 1979, pp. 287-292.
[30] K. Denger, S. Weinitschke, K. Hollemeyer and A. M. Cook, “Sulfoacetate Generated by Rhodopseudomonas Palustris from Taurine,” Archives of Microbiology, Vol. 182, No. 2-3, October 2004, pp. 254-258. doi:10.1007/s00203-004-0678-0
[31] C. Cuningham, K. F. Tipton and H. B. F. Dixon, “Conversion of Taurine into N-Chlorotaurine (Taurine Chloramine) and Sulphoacetaldehyde in Response to Oxidative Stress,” Biochemical Journal, Vol. 330, March 1998, pp. 939-945.
[32] A. El Idrissi, L. Boukarrou, W. Heany, G. Malliaros, C. Sangdee and L. Neuwirth, “Effects of Taurine on Anxiety-Like and Locomotor Behavior of Mice,” Advances in Experimental Medicine and Biology, Vol. 643, 2009, pp. 207-215. doi:10.1007/978-0-387-75681-3_21

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.