Cellular Perception: When the Cell Model Includes a Sense Order which Ensues from a Philosophy of Nature, the Signaling and Epigenetics Effects which Can Result from Exposure to Magnetic Fields Are Described Better
Pierre Le Chapellier, Badri Matta
.
DOI: 10.4236/nm.2011.23023   PDF    HTML   XML   5,204 Downloads   10,294 Views   Citations

Abstract

Academic biology-medicine refers to a couple of philosophies, Organicism and Mechanism, which translates into an association of Cybernetic diagrams and molecular Reductionism. This association presents logical difficulties which make it unsuitable to describe correctly biological effects of electromagnetic fields, EMF. But these logical difficulties may be overcome when renewing the organic cell idea by means of a Philosophy of Nature which juxtaposes causality order and sense order in the cell. The signalsome, the set of descriptive components resulting from the genome, is constantly reorganized. This remodeling may become epigenetic when the phenotype becomes transformed by experience of perceptions in a given medium, because the perception of overall information coming from the extracellular medium becomes functional within the system. In that cellular perception, it is stated that the significance base which contributes to the sense order results from the qualitative topological structure of the extracellular medium. Therefore the EMF interactions target is not only the membrane and its molecules; it is also the structure of the extracellular medium which bathes the membrane. Knowing that the sense order modulation constitutes the global soil of the (localized) causality order, it is possible to obtain a same EMF bioeffect on a membrane molecule by treating a culture of cells in its bath or by treating only the extracellular aqueous medium. Consequently, the double bioeffect resulting from EMF exposure is described simply, because the sense order, such as it results from the qualitative structuring of the medium, forms the significance base which directs the causal mechanics of the cellular answer.

Share and Cite:

P. Chapellier and B. Matta, "Cellular Perception: When the Cell Model Includes a Sense Order which Ensues from a Philosophy of Nature, the Signaling and Epigenetics Effects which Can Result from Exposure to Magnetic Fields Are Described Better," Neuroscience and Medicine, Vol. 2 No. 3, 2011, pp. 161-177. doi: 10.4236/nm.2011.23023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. F. Schenck. C. L. Dumoulin and P. Souza, “Health and Physiological Effects of Human Exposure to Whole-Body 4 Tesla Magnetic Fields during Magnetic Resonance Scanning, Book of Abstracts,” Society of Resonance Imaging in Medicine, Berkeley, 1990, p. 277.
[2] L. Teodoni, W. G?hde, Mg. Valente, F. Tagliaferri, et al., “Static Magnetic Fields Affect Calcium Fluxes and Inhibit Stress-Induced Apoptosis in Human Glioblastoma Cells,” Cytometry Part A, Vol. 49, No. 4, 2002, pp. 143- 149.
[3] P. Nagy, “The Effect of Low Inductivity Static Magnetic Field on Some Plant Pathogen Fungi,” Journal of Central European Agriculture, Vol. 6, No. 2, 2005, pp. 167-171.
[4] P. Lazarekis, “Effects of a Static Magnetic Field on Biological Samples,” Thesis, University of Wollongong, Australia, 2009. http://trove.nla.gov.au/work/359668578?selec-tedvesion=NBD44884397
[5] A. R. Liboff, “Towards an Electromagnetic Paradigm for Biology and Medicine,” The Journal of Complementary and Alternative Medicine, Vol. 10, No. 1, 2004, pp. 41- 47.
[6] R. E. Jacobs, “MRI: Volumetric imaging for vital imaging and atlas construction,” Imaging in Cell Biology, September 2003, pp. SS10-SS16. www.nature.com/focus/cell-bioimaging
[7] R. Thom, “Modèles Mathématiques de la Morphogenèse,” Christian Bourgeois, Paris, 1980, noté MMM
[8] H. Poincaré, “Analysis Situs,” Journal de l’Ecole Polytechnique, 2e ser., Paris, 1895, Cahier I.
[9] E. Chautard, N. Thierry-Mieg and S. Ricard-Blum, “Interactions Networks: From Proteins Functions to Drug Discovery. A Review,” Pathologie Biologie, Vol. 57, No. 4, 2009, pp. 324-333. doi:10.1016/J.patbio.2008.10.004
[10] A. Toscano, “Merleau-Ponty, Whitehead and the Politics of Nature, Merleau-Ponty and the Philosophy of Nature Conference,” University of Warwick, Warwick, May 2003.
[11] R. Thom, “La Théorie du Cobordisme, Fields Medal Conference,” Edimbourg, 1958.
[12] M. Merleau-Ponty, “La Phénoménologie de la Perception, Gallimard,” Paris, 1945.
[13] J. Largeault, “Réductionnisme et Holisme,” Encyclopedia Universalis, Paris, 2006.
[14] J. R. Munson and R. C. York, “Nature, Philosophy of, Encyclopaedia Britannica,” Chicago, 2007.
[15] C. Gillain, “La Théorie Qualitative de Poincaré et le Problème de l'intégration des équations Différentielles,” In: H. Gispert, Ed., La France Mathématique: La Société Mathématique de France, 1872-1914, SFHST-SMF, Paris, 1991, pp. 215-242.
[16] J. Mawhin, “The Early Reception in France of the Work of Poincaré and Lyapunov in the Qualitative Theory of Differential Equations,” Philosophia Scientiae, Vol. 1, No. 4, 1996, pp. 119-133.
[17] A. N. Whitehead, “The Concept of Nature,” Cambridge University Press, Cambridge, 1920.
[18] A. N. Whitehead, “Science and the Modern World,” The MacMillan Company, New-York, 1925.
[19] A. N. Whitehead, “Symbolism, Its Meaning and Effects,” The MacMillan Company, New York, 1927.
[20] A. N. Whitehead, “Process and Reality,” The MacMillan Company, New-York, 1929.
[21] M. Merleau-Ponty, “La nature-Notes,” Cours au Collège de France, Seuil, Paris, 1995.
[22] R. Barbaras, “Merleau-Ponty et la Nature,” Atelier Merleau-Ponty, U de Toulouse, 9 Septembre 2000.
[23] P. A. Miquel, “Qu’y-a-t-il de Vital dans un Organisme Vivant?” Bulletin d’Analyse Phénoménologique, Vol. 2, 2010, pp. 313-337.
[24] M. Blank and R. Goodman, “Electromagnetic Fields Stress Living Cells,” Pathophysiology, Vol. 16, No. , 2009, pp. 71-78. doi:10.1016/j.pathophys.2009.01.006
[25] M. J. Berridge, “Cell Signaling Biology,” Portland Press Limited, Portland 2008. www.cellsignallingbiology.org
[26] A. Z. Fire and C. C. Mello, “RNA Interference, Advanced Information,” The Nobel Prize in Physiology or Medicine 2006. http://nobelprize.org/nobel_prizes/medicine/laureates/2006/adv.html
[27] M. Radman, “Enzymes of Evolutionary Change,” Nature, Vol. 401, No. 6756, 1999, pp. 868-869.
[28] S. L. Berger, T. Kouzadires, R. Shiekhattar and A. Shilatifard, “An Operational Definition of Epigenetics,” Genes & Development, Vol. 23, No. 7, 2009, pp. 781-783. http://genesdev.cshlp.org/con-tent/23/7/781.full doi:10.1101/gad.1787609,
[29] M. W. Ho, “How Development Directs Evolution Epigenetics & Generative Dynamics, Evolution and the Future Conference,” Hotel Continental-Beograd, Belgrade, 14- 18 October 2009.
[30] D. Baulcombe, “Of maize and Men, or Peas and People: Case Histories to Justify Plants and Other Model Systems,” Nature Medicine, Vol. 14, No. 10, October 2008, pp. 20-28. doi:10.1038/nm1008-1046
[31] M. Mott, “Did Animals Sense Tsunami Was Coming?” National Geographic News, January 4, 2005
[32] M. Heidegger, “Lettre sur l’humanisme, tr. R. Munier in Questions III,” Collection Tel, Gallimard, Paris, 1959 (in French, from German).
[33] A. Tan, A. Jimeno, B. Rubio-Viqueira and M. Hidalgo, “NCI-60 Gene Set Connectivity Map, GS-Cmap: Connecting Pathway-Based Gene Expression Profiles for Therapeutic Efficacy Determination,” Journal of clinical oncology, ASCO Annual Meeting Proceedings, Vol. 26, 20 May 2008, p. 3588.
[34] Z. Wang, A. Sarje, P. L. Che and K. J. Yarema, “Moderate strength (0.23-0.28 T) Static Magnetic Fields (SMF) Modulate Signaling and Differentiation in Human Embryonic Cells,” BMC Genomics, Vol. 10, No. 356, 2009, pp. 1-23. www.biomedcentral.com/1471-2164/10/356
[35] K. Kull, “Jakob von Uexküll: An introduction,” Semiotica, Vol. 134, No. 1-4, 2001, pp. 1-59, [Includes complete bibliography of Uexküll].
[36] S. N. Ayrapetyan, “Cell Aqua Medium as a Primary Target for the Effect of Electromagnetic Fields,” Bioelectromagnetics Current Concepts, NATO Security through Science Services, Springer, 2006, pp. 31-63. doi:10.1007/1-4020-4276-8
[37] R. M. Kiehn, “Non-Equilibrium Systems and Irreversible Processes,” Topological Torsion and Macroscopic Spinors, Lulu, Vol. 5, 2008. http://www.lulu.com/kiehn
[38] V. N. Binhi and A. B. Rubin, “Magnetobiology :The kT Paradox and Possible Solutions,” Electromagnetic biology and Medicine, Vol. 26, No. 1, 2007, pp. 45-62.
[39] G. Andocs, G. Y. Vincze, O. Szasz, P. Szendro and A. Szasz, “Effects of Curl-Free Potentials on Water,” Electromagnetic Biology and Medicine, Vol. 28, No. 2, 2009 , pp. 166-181.
[40] A. van Oudennaarden, M. H. Devoret, Y. V. Nazarov and J. E. Mooij, “Magneto-Electric Aharonov-Bohm Effet in Metal Rings, Letters to Nature,” Nature, Vol. 391, 1998, pp. 768-770G.
[41] P. Mentré, “L’eau dans la Cellule, Masson,” Paris, 1995, ISBN 2-225-84608-1 (in French).
[42] V. E. Petrenko, et al., “The Influence of Inclusion of Non-Electrostatic OH interaction in the Empirical Pair Potential for Water on the Mutual Orientation of Molecules in the Nearest Surround,” Saint-Petersbourg, Russia, 12-16 July 2004.
[43] V. I. Tikhonov and A. A. Volkov, “Separation of Water in Its Ortho and Para Isomers,” Science, Vol. 296, No. 5577, 2002, p. 2363
[44] M. Colic and D. Morse, “The Elusive Mechanism of the Magnetic Memory of Water,” Colloids and Surfaces A, Vol. 154, No. 1-2, 1999, pp. 167-174.
[45] C. Gabrielli, R. Jaouhari, G. Maurin and M. Keddam, “Magnetic Water Treatment for Scale Prevention,” Water Research, Vol. 35, No. 13, 2001, pp. 3249-3259. doi:10.1016/S0043-1354(01)00010-0
[46] K. Higashitani, H. Iseri, K. Okuhara, A. Kage and S. Hatade, “Magnetic Effects on Zeta Potential and Diffusivity of Nonmagnetic Colloidal Particles,” Journal of Colloid and Interface Science, Vol. 172, No. 2, 1995, pp. 383-388. doi:10.1006/jcis.1995.1268
[47] L. C. Lipus, J. Krope and L. Crepinsek, “Dispersion Destabilization in Magnetic Water Treatment,” Journal of Colloid and Interface Science, Vol. 236, No. 1, 2001, pp. 60-66. doi:10.1006/jcis.2000.7392
[48] P. Vallée, “Etude de l’effet de Champs électromagnétiques Basse Fréquence Sur les Proprieties Physico- Chimi-ques de L’Eau,” Doctorate Thesis, Thèse de Doctorat de l’Université Pierre et Marie Curie, Paris VI, 2004.
[49] P. Le Chapellier, “L’Humidité des Lieux et la Santé,” Journées Toulousaines de l’Eau 2004, Toulouse, 19-20 Septembre 2004.
[50] O. Devos, A. Oliver, J. P. Chopart, O. Aaboubi and G. Maurin, “Magnetic Field Effects on Nickel Electrodeposition,” Journal of The Electrochemical Society, Vol. 145, No. 2, 1998, pp. 401-405.| doi:10.1149/1.1838276
[51] N. Gavrilov-Yusim, E. Hahiashvili, M. Tashker, V. Ya- velsky, O. Karnieli and L. Lobel, “Enhancement of Hybridoma Formation, Clonability and Cell Proliferation in a Nanoparticle-Doped Aqueous Environment,” BMC Bio- technology, Vol. 8, No. 3, 2008, p. 3. http://www.biomedcentral.com/1472-6750/8/3
[52] E. E. Fesenko, V. I. Geletyuk, V. N. Kazachenko and N. K. Chemeris, “Preliminary Microwave Irradiation of Water Solutions Changes Their Channel-Modifying Activity,” FEBS Letters, Vol. 386, No. 1, 1995, pp. 49-52. doi:10.160014-5793(95)
[53] V. S. J. Craig, B. W. Ninham and R. M. Pashley, “The Effect of Electrolytes on Bubble Coalescence in Water,” The Journal of Physical Chemistry (ACS Publications), Vol. 97, No. 39, 1993, pp. 10192-10197. doi:10.1021/j100141a047
[54] A. V. Botelho, T. Huber, T. P. Sakmar and M. F. Brown, “Curvature and Hydrophobic Forces Drive Oligomerization and Modulate Activity of Rhodopsin in Membranes,” Biophysical Journal, Vol. 91, No. 12, 2006, pp. 4464- 4477. doi:10.1529biophysj.106.082776
[55] A. D. Rosen, “Studies on the Effect of Static Magnetic Fields on Biological Systems,” PIERS Online, Vol. 6, No. 2, 2010, pp. 133-136.
[56] F. Marinelli, F. Bersani, S. Santi, M. Riccio, S. Petrini, A. Valmori and N. M. Maraldi, “50 Hz Pulsed Magnetic Fields Affect Intramembrane Proteins Distribution in Cultured Cells, Electricity and Magnetism in Biology and Medicine,” Proceedings of the Second World Congress, Bologna, Italy, June 8-13 1997, pp. 31-32.
[57] P. Le Chapellier and B. Matta, “Cellular Perception and Static Magnetic Fields Active Penetration Depth for Pain Magnetotherapy,” PIERS Online, Vol. 6, No. 3, 2010, pp. 287-292. doi:10.2529/PIERS090930101455
[58] A. Bankura and A. Chandra, “Hydration and Translocation of an Excess Proton in Water Clusters: An ab Initio Molecular Dynamics Study,” Pranam Journal of Physics, Vol. 65, No. 4, 2005, pp. 763-768.
[59] M. Wikstr?m, M. I. Verkhosky and G Hummer, “Water-Gated Mechanism of Proton Translocation by Cytochrome c oxidase,” Biochimica & Biophysica Acta, Bioenergetics, Vol. 1604, No. 2-5, 2003, pp. 61-65.
[60] P. Mentré, “Interfacial Water: A Modulator of Biological Activity,” Journal of Biological Physics and Chemistry, Vol. 4, 2004, pp. 115-123.
[61] M. de Mattei, M. Fini, S. Setti, A. Ongaro, D. Gemmati, G. Stabellini, A. Pellati and A. Caruso, “Proteoglycan Synthesis in Bovine-Articular Cartilage Explants Exposed to Different Low-Frequency Low-Energy Pulsed Electromagnetic Fields,” Osteoarthritis and Cartilage, Vol. 15, No. 2, 2007, pp. 163-168.
[62] F. Pezetti, M. De Mattei, A. Caruso, R. Cadossi, P. Zucchini, F. Carinci, G. C. Traina and V. Sollazo, “Effects of Pulsed Electromagnetic Fields on Human Chondrocytes, an in-Vitro Study,” Calcified Tissue International, Vol. 65, No. 5, 1999, pp. 396-401. doi:10.1007/s002239900720
[63] M. De Mattei, A. Pellati, M. Pasello, A. Ongaro, S. Setti, L. Massari, et al., “Effects of Physical Stimulation With Electromagnetic Field and Insulin Growth Factor-1 Treatment on Proteoglycan Synthesis of Bovine Articular Carilage,” Osteoarthritis and Cartilage, Vol. 12, No. 10, 2004, pp. 793-800.
[64] M. De Mattei, A. Caruso, F. Pezetti, A. Pellati, G. Stabellini and V. Sollazo, “Effects of Pulsed Electromagnetic Fields on Human Articular Chondrocyte Proliferation,” Connective Tissue Research, Vol. 42, No. 2, 2001, pp. 1- 11.
[65] M. De Mattei, A. Caruso, F. Pezetti, A. Pellati, G. Stabellini, V. Sollazo and G. C. Traina, “Electromagnetic Fields on Human Articular Chondrocyte Proliferation,” Connective Tissue Research, Vol. 42, No. 4, 2001, pp. 269-279.
[66] M. E. Jahns, E. Lou, N. G. Durdie, et al., “The Effect of Pulsed Electromagnetic Fields on Chondrocyte Morphology,” Medical & Biological Engineering & Computing, Vol. 45 , No. 10, 2007, pp. 917-925.
[67] R. Cadossi, F. Bersani, A. Cossarizza, P. Zucchini, G. Emilia, G. Torelli and C Francheschi, “Lymphocytes and Low-Frequency Electromagnetic Fields,” The FASEB Journal, Vol. 6, No. 9, 1992, pp. 2667-2675.
[68] J. Zhou, G. Gao, J. Zhang and Z. Chang, “CREB DNA binding activation by a 50-Hz Magnetic Field in HL-60 Cells Is Dependent on Extra- and intracellular Ca2+ but Not PKA, PKC, ERK or p38 MAPK,” Biochemical and Biophysical Research Communications, Vol. 296, No. 4, 2002, pp. 1013-1018. doi:10.1016/S0006-291X(02)02022-3
[69] S. Mac Neil, R. A. Dawson, et al., “Extracellular Calmo- Dulin and Its Association with Epidermal Growth Factor in Normal Human Body Fluids,” Journal of Endocrinology, Vol. 118, No. 3, 1988, pp. 501-509.
[70] T. WenQiang, G. Yi, S. Yu, T. Jung and S. DaYe, “Extracellular Calmodulin-Binding Proteins in Body Fluids of Animals,” Journal of Endocrinology, Vol. 155, No. 1, 1997, pp. 13-17.
[71] E. Onuma and S. Hu, “Electric-Field-Directed Cell Shape Changes, Displacement and Cytoskeletal Reorganization Are Calcium Dependent,” The Journal of Cell Biology, Vol. 106, No. 6, 1988, pp. 2067-2075.
[72] M. Cho, I. Titushkin and S. Shun, “Altered Calcium Dynamics and Cellular Mechanisms Mediate Electrically Enhanced Stem Cell Differentiation,” Session 5, Mechanisms of Cell Interactions with EMF, Proceedings of the 29th Biolectromagnetic Society Annual Meeting, Kanazawa, 10-15 June 2007, pp. 84-85.
[73] A. Schuster, “Intracellular Calcium and Diameter Dynamics in Arteries Perfused in Vitro,” Thèse de Doctorat de Physique, EPFL, Lausanne, 2001.
[74] J. M. Bathon, “Bradikinine Is a Potent and Relatively Selective Stimulus for Cytosolic Calcium Elevation In Human Synovial Cells,” The Journal of Immunology, Vol. 153, No. 6, 1994, pp. 2600-2608.
[75] D. Gelperin, “Bradikinine (Bk) Increases Cytosolic Calcium in Cultured Rat Myenteric Neurons,” Pharmacology, Vol. 271, No. 1, 1994, pp. 507-514.
[76] N. Voitenko, “Calcium Disorders as A Common Denominator of Different Types of Pain,” Physiology News, Vol. 65, 2006, pp. 33-34. www.physoc.org
[77] S. Hanada and S. Yamada, “Extremely low frequency magnetic fields affect transcript levels os neuronal genes in Caenorhabditis Elegans,” Proceedings of BEMS the 29th Annual Meeting, Kanazawa, 10-15 June 2007, pp. 436-437.
[78] L. Potenza, L. Ubaldi, R. De Sanctis, R. de Bellis, R. Cucchianini and M. Dacha, “Effects of a Static Magnetic Field on Cell Growth and Gene Expression in Escherichia Coli,” Mutation Research, Vol. 561, No. 1-2, 11 July 2005, pp. 53-62.
[79] Y. Hashimoto, “Effect of Static Magnetic Field on Cell Migration,” Electrical Engineering in Japan, Vol. 160, No. 2, 2007, pp. 46-52. doi:10.1002/eej.20203
[80] S. Xu, N. Tomita, K. Ikeuchi and Y. Ikada, “Recovery of Small-Sized Blood Vessels in Ischemic Bone under Static Magnetic Field,” ECAM, Vol. 4, No. 1, 2007, pp. 59-63.
[81] H. Okano, K. Gmitrov and C. Ohkubo, “Biphasic Effects of Static Magnetic Fields on Cutaneous Microcirculation in Rabbits,” Bioelectromagnetics, Vol. 20, No. 3, 1999, pp. 161-171.
[82] H. N. Mayrowitz and E. E. Groseclose, “Effects of a Static Magnetic Field of Either Polarity on Skin Microcirculation,” Microvascular Research, Vol. 69, No. 1-2, 2005, pp. 24-27. doi:10.1016/j.mvr.2004.11.002
[83] P. Le Chapellier and B. Matta, “Pain Relief by Magnetic Fields and Theories of Radicals Pair and Methionine Oxidation,” Procedeings of the 3rd International Forum on Pain Medicine, Montreal, 28 June-1 July 2007, p. 128.
[84] J. M. P. Le Chapellier, “Les eaux de l’ame et de l’Esprit, Journées Toulousaines de l’Eau 2010,” Institut Catholique de Toulouse, Toulouse, 11-12 Septembre 2010, (in French).
[85] C. G. Jung, “Mysterium Conjonctionis,” T1, Albin Michel, Paris, (in French).
[86] J. Dieudonné, “Eléments d’Analyse,” Vol. IX, Topologie Algébrique et Différentielle, Gauthier-Villars, Paris, 1982, (in French).
[87] J. Bard, “The Cellular and Molecular Processes of Developmental Anatomy,” In: C H. Waddington, Ed., Biological Development, Enc. Britannica, Chicago, 2007.
[88] R. M. Kiehn “Non Equilibrium Systems and Irreversible Processes,” Non Equilibrium Thermodynamics, Lulu, Vol. 1, 2009. www.lulu.com/kiehn
[89] R. M. Kiehn, “Kolmogorov-Cartan T0 Spaces of Exterior Differential Forms with Applications to Non-Equilibrium Thermodynamic Systems, and the Emergence of Mor- phogenic Germs via Dissipative Irreversible Processes,” International Conference on Topology and its Applications, 6-11 July 2009, Hacettepe University, Ankara, Tur- key.
[90] R. M. Kiehn, “Private Communication to the Authors,” February 2010.
[91] R. M. Kiehn “T0 or Not-T0, That Is the Topological Question, Algebra meets Topology: Advances and Applications,” A Conference in Honour of Dikran Dikranjan’s 60th Birthday, UPC-Barcelona Tech., Barcelona, July 19-23, 2010.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.