Development and Application of Time-Resolved Surface Plasmon Resonance Spectrometer
Yan Mao, Yu Bao, Wei Wang, Zhenggang Li, Fenghua Li, Li Niu
.
DOI: 10.4236/ajac.2011.25067   PDF    HTML     6,266 Downloads   12,289 Views   Citations

Abstract

Surface plasmon resonance (SPR) sensor, an optical sensor exploiting special electromagnetic waves-surface plasmon polaritons to probe interactions between an analyte in solution and a molecular recognition element immobilized on the SPR sensor surface, has been widely used in various realms, such as investigating biomolecular interactions and binding properties, detection of biological and chemical analytes, environmental monitoring, food safety and medical diagnostics. This paper reviews the development of SPR sensors and SPR commercial instruments, and emphatically introduces the time-resolved surface plasmon resonance (TR-SPR) techniques. The excellent performances of high sensitivity and rapid detection are easily achieved with TR-SPR spectrometer, whereas the traditional SPR spectrometer cannot be accomplished. Therefore, TR-SPR spectrometer is appropriate for real time analysis of bio-recognition events and small molecular dynamics. However, only two commercial TR-SPR instruments have been exhibited at present, Thermo FT-SPR 100 and Autolab ESPRIT (SPRINGLE). Unfortunately, the high-priced instruments are not suitable for extensive applications in laboratories at present. Herein, a novel commercial TR-SPR spectrometer has been introduced in this review.

Share and Cite:

Y. Mao, Y. Bao, W. Wang, Z. Li, F. Li and L. Niu, "Development and Application of Time-Resolved Surface Plasmon Resonance Spectrometer," American Journal of Analytical Chemistry, Vol. 2 No. 5, 2011, pp. 589-604. doi: 10.4236/ajac.2011.25067.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. Blow, “Proteins and proteomics: life on the surface,” Nature Methods, Vol. 6, No. 5, May 2009, pp. 389-392.
[2] Y. Liu, Y. Dong, J. Jauw, M. J. Linman and Q. Cheng, “Highly Sensitive Detection of Protein Toxins by Surface Plasmon Resonance with Biotinylation-Based Inline Atom Transfer Radical Polymerization Amplification,” Analytical Chemistry, Vol. 82, No. 9, April 2010, pp. 3679-3685.
[3] C. M. Cuerrier, V. Chabot, S. Vigneux, V. Aimez, E. Escher, F. Gobeil, P. G. Charette and M. Grandbois, “Sur- face Plasmon Resonance Monitoring of Cell Monolayer Integrity: Implication of Signaling Pathways Involved in Actin-Driven Morphological Remodeling,” Cellular and Molecular Bioengineering, Vol. 1, No. 4, December 2008, pp. 229-239.
[4] S. H. Lee, H. J. Ko and T. H. Park, “Real-Time Monitor-ing of Odorant-Induced Cellular Reactions Using Surface Plasmon Resonance,” Biosensors & Bioelectronics, Vol. 25, No. 1, June 2009, pp. 55-60.
[5] A. L. Plant, M. Brighamburke, E. C. Petrella and D. J. Oshannessy, “Phospholipid/alkanethiol bilayers for cell- surface receptor studies by surface plasmon resonance,” Analytical Biochemistry, Vol. 226, No. 2, April 1995, pp. 342-348.
[6] J. Chen, K. Carey and P. J. Godowski, “Identification of Gas6 as a Ligand for Mer, a Neural Cell Adhesion Mole-cule Related Receptor Tyrosine Kinase Implicated in Cellular Transformation,” Oncogene, Vol. 14, No. 17, May 1997, pp. 2033-2039.
[7] G. E. de Kloe, K. Retra, M. Geitmann, P. Kallblad, T. Nahar, R. van Elk, A. B. Smit, J. E. van Muijlwijk- Koe-zen, R. Leurs, H. Irth, U. H. Danielson and I. J. P. de Esch, “Surface Plasmon Resonance Biosensor Based Fragment Screening Using Acetylcholine Binding Protein Identifies Ligand Efficiency Hot Spots (LE Hot Spots) by Deconstruction of Nicotinic Acetylcholine Receptor alpha 7 Ligands,” Journal of Medicinal Chemistry, Vol. 53, No. 19, September 2010, pp. 7192-7201.
[8] S. T. R. Walsh, “A Biosensor Study Indicating That En-tropy, Electrostatics, and Receptor Glycosylation Drive the Binding Interaction between Interleukin-7 and Its Receptor,” Biochemistry, Vol. 49, No. 40, September 2010, pp. 8766-8778.
[9] M. Veiseh, M. H. Zareie and M. Q. Zhang, “Highly Se-lective Protein Patterning on Gold-Silicon Substrates for Biosensor Applications,” Langmuir, Vol. 18, No. 17, July 2002, pp. 6671-6678.
[10] M. Zayats, O. A. Raitman, V. I. Chegel, A. B. Kharitonov and I. Willner, “Probing Antigen-Antibody Binding Processes by Impedance Measurements on Ion-Sensitive Field-Effect Transistor Devices and Complementary Sur-face Plasmon Resonance Analyses: Development of Cholera Toxin Sensors,” Analytical Chemistry, Vol. 74, No. 18, September 2002, pp. 4763-4773.
[11] J. M. Lee, H. K. Park, Y. Jung, J. K. Kim, S. O. Jung and B. H. Chung, “Direct Immobilization of Protein G Va-riants with Various Numbers of Cysteine Residues on a Gold Surface,” Analytical Chemistry, Vol. 79, No. 7, March 2007, pp. 2680-2687.
[12] C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu and M. Pugniere, “Antibody-Antigenic Peptide Interactions Monitored by SPR and QCM-D—A Model for SPR De-tection of IA-2 Autoantibodies in Human Serum,” Bio-sensors & Bioelectronics, Vol. 22, No. 12, June 2007, pp. 3113- 3119.
[13] L. C. Su, R. C. Chen, Y. C. Li, Y. F. Chang, Y. J. Lee, C. C. Lee and C. Chou, “Detection of Prostate-Specific An-tigen with a Paired Surface Plasma Wave Biosensor,” Analytical Chemistry, Vol. 82, No. 9, April 2010, pp. 3714-3718.
[14] A. Singhal, C. A. Haynes and C. L. Hansen, “Microfluidic Measurement of Antibody-Antigen Binding Kinetics from Low-Abundance Samples and Single Cells,” Analytical Chemistry, Vol. 82, No. 20, September 2010, pp. 8671-8679.
[15] H. A. Craig-Barnes, B. S. Doumouras and N. Palaniyar, “Surfactant Protein D Interacts with alpha(2)-Macroglo- bulin and Increases Its Innate Immune Potential,” Journal of Biological Chemistry, Vol. 285, No. 18, April 2010, pp. 13461-13470.
[16] D. K. Cole, E. S. J. Edwards, K. K. Wynn, M. Clement, J. J. Miles, K. Ladell, J. Ekeruche, E. Gostick, K. J. Adams, A. Skowera, M. Peakman, L. Wooldridge, D. A. Price and A. K. Sewell, “Modification of MHC Anchor Residues Generates Heteroclitic Peptides That Alter TCR Binding and T Cell Recognition,” Journal of Immunology, Vol. 185, No. 4, August 2010, pp. 2600-2610.
[17] Y. Teramura, H. Iwata, “Label-Free Immunosensing for Alpha-Fetoprotein in Human Plasma Using Surface Plasmon Resonance,” Analytical Biochemistry, Vol. 365, No. 2, June 2007, pp. 201-207.
[18] V. Kumar, M. I. Hassan, A. K. Singh, S. Dey, T. P. Singh and S. Yadav, “Strategy for Sensitive and Specific Detec-tion of Molecular Forms of PSA Based on 2DE and Ki-netic Analysis: A Step Towards Diagnosis of Prostate Cancer,” Clinica Chimica Acta, Vol. 403, No. 1-2, May 2009, pp. 17-22.
[19] N. Debotton, H. Zer, M. Parnes, O. Harush-Frenkel, J. Kadouche and S. Benita, “A Quantitative Evaluation of the Molecular Binding Affinity between a Monoclonal Antibody Conjugated to a Nanoparticle and an Antigen by Surface Plasmon Resonance,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 74, No. 2, February 2010, pp. 148-156.
[20] H. Nishijima, A. Kosaihira, J. Shibata and T. Ona, “De-velopment of Signaling Echo Method for Cell-based Quantitative Efficacy Evaluation of Anti-cancer Drugs in Apoptosis without Drug Presence Using High-precision Surface Plasmon Resonance Sensing,” Analytical Sciences, Vol. 26, No. 5, May 2010, pp. 529-534.
[21] I. Navratilova, A. L. Hopkins, “Fragment Screening by Surface Plasmon Resonance,” ACS Medicinal Chemistry Letters, Vol. 1, No. 1, February 2010, pp. 44-48.
[22] R. S. Moirangthem, Y. C. Chang, S. H. Hsu and P. K. Wei, “Surface Plasmon Resonance Ellipsometry Based Sensor for Studying Biomolecular Interaction,” Biosensors & Bioelectronics, Vol. 25, No. 12, August 2010, pp. 2633-2638.
[23] N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi and A. Revzin, “Development of an Aptamer Beacon for Detection of Interferon-Gamma,” Analytical Chemistry, Vol. 82, No. 5, March 2010, pp. 1851-1857.
[24] M. Geitmann, K. Retra, G. E. de Kloe, E. Homan, A. B. Smit, I. J. P. de Esch and U. H. Danielson, “Interaction Kinetic and Structural Dynamic Analysis of Ligand Binding to Acetylcholine-Binding Protein,” Biochemistry, Vol. 49, No. 37, September 2010, pp. 8143-8154.
[25] N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta and J. D’Agnese, “High Resolution Surface Plasmon Re-sonance Spectroscopy,” Review of Scientific Instruments, Vol. 70, No. 12, August 1999, pp. 4656-4660.
[26] S. Boussaad, J. Pean and N. J. Tao, “High-Resolution Multiwavelength Surface Plasmon Resonance Spectros-copy for Probing Conformational and Electronic Changes in Redox Proteins,” Analytical Chemistry, Vol. 72, No. 1, January 2000, pp. 222-226.
[27] J. E. Garland, K. A. Assiongbon, C. M. Pettit and D. Roy, “Surface Plasmon Resonance Transients at an Electro-chemical Interface: Time Resolved Measurements Using A Bicell Photodiode,” Analytica Chimica Acta, Vol. 475, No. 1-2, January 2003, pp. 47-58.
[28] C. M. Pettit, K. A. Assiongbon, J. E. Garland and D. Roy, “Time Resolved Detection of Electrochemical Effects by Surface Plasmon Resonance Measurements: A Simple Technique Using a Large Area Single Cell Photodiode,” Sensors and Actuators B: Chemical, Vol. 96, No. 1-2, July 2003, pp. 105-113.
[29] R. J. Green, J. Davies, M. C. Davies, C. J. Roberts and S. J. B. Tendler, “Surface Plasmon Resonance for Real Time in Situ Analysis of Protein Adsorption to Polymer Surfaces,” Biomaterials, Vol. 18, No. 5, March 1997, pp. 405-413.
[30] J. Homola, S. S. Yee and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sensors and Actuators B- Chemical, Vol. 54, No. 1-2, January 1999, pp. 3-15.
[31] R. L. Rich, D. G. Myszka, “Advances in surface plasmon resonance biosensor analysis,” Current Opinion in Bio-technology, Vol. 11, No. 1, February 2000, pp. 54-61.
[32] K. Johansen, H. Arwin, I. Lundstrom and B. Liedberg, “Imaging Surface Plasmon Resonance Sensor Based on Multiple Wavelengths: Sensitivity Considerations,” Review of Scientific Instruments, Vol. 71, No. 9, June 2000, pp. 3530-3538.
[33] C. L. Baird, D. G. Myszka, “Current and Emerging Commercial Optical Biosensors,” Journal of Molecular Recognition, Vol. 14, No. 5, October 2001, pp. 261-268.
[34] S. Dong, X. Chen, “Some new aspects in biosensors,” Reviews in Molecular Biotechnology, Vol. 82, No. 4, February 2002, pp. 303-323.
[35] E. Kretschmann, H. Raether, “Radiative Decay of Non- radiative Surface Plasmons Excited by Light,” Zeitschrift fur Naturforschung part A-Astrophysik physik und physi-kalische chemie Vol. 23A, 1968, pp. 2135-2136.
[36] A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Ref-lection,” Zeitschrift für Physik A Hadrons and Nuclei, Vol. 216, No. 4, July 1968, pp. 398-410.
[37] J. Homola, I. Koudela and S. S. Yee, “Surface Plasmon Resonance Sensors Based on Diffraction Gratings and Prism Couplers: Sensitivity Comparison,” Sensors and Actuators B: Chemical, Vol. 54, No. 1-2, January 1999, pp. 16-24. Hdoi:org/10.1016/S0925-4005(98)00322-0
[38] J. Homola, “Surface Plasmon Resonance Based Sensors,” Springer, Verlag Berlin Heidelberg, 2006, pp. 26-29.
[39] J. Homola, “Present and Future of Surface Plasmon Re-sonance Biosensors,” Analytical and Bioanalytical Che-mistry, Vol. 377, No. 3, October 2003, pp. 528-539. doi:org/10.1007/s00216-003-2101-0
[40] A. N. Grigorenko, P. I. Nikitin and A. V. Kabashin, “Phase Jumps and Interferometric Surface Plasmon Re-sonance Imaging,” Applied Physics Letters, Vol. 75, No. 25, October 1999, pp. 3917-3919. doi:org/10.1063/1.125493
[41] L. I. Goray, J. F. Seely, “Efficiencies of Master, Replica, and Multilayer Gratings for the Soft-X-Ray-Extreme-Ultraviolet Range: Modeling Based on the Modified Integral Method and Comparisons with Measurements,” Applied Optics, Vol. 41, No. 7, March 2002, pp. 1434-1445. doi:org/10.1364/AO.41.001434
[42] R. W. Wood, “On a Remarkable Case of Uneven Distri-bution of Light in a Diffraction Grating Spectrum,” Phi-losophical Magazine, Vol. 4, No. 21, September 1902, pp. 396-402.
[43] R. W. Wood, “Diffraction Gratings with Controlled Groove form and Abnormal Distribution of intensity,” Philosophical Magazine, Vol. 23, No. 134, February 1912, pp. 310-317.
[44] U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (So- mmerfeld’s Waves),” Journal of Optical Society of America, Vol. 31, No. 3, March 1941, pp. 213-222. doi:org/10.1364/JOSA.31.000213
[45] R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Physical Review, Vol. 106, No. 5, February 1957, pp. 874-881. Hdoi:org/10.1103/PhysRev.106.874
[46] C. J. Powell, J. B. Swan, “Origin of the Characteristic Electron Energy Losses in Aluminum,” Physical Review, Vol. 115, No. 4, August 1959, pp. 869-875. doi:org/10.1103/PhysRev.115.869
[47] E. A. Stern, R. A. Ferrell, “Surface Plasma Oscillations of a Degenerate Electron Gas,” Physical Review, Vol. 120, No. 1, October 1960, pp. 130-136. doi:org/10.1103/PhysRev.120.130
[48] E. Kretschmann, “Die Bestimmung Optischer Konstanten von Metallen durch Anregung von Oberfl?chenplas-maschwingungen,” Zeitschrift für Physik A Hadrons and Nuclei, Vol. 241, No. 4, September 1971, pp. 313-324.
[49] J. G. Gordon Ii, J. D. Swalen, “The effect of thin organic films on the surface plasma resonance on gold,” Optics Communications, Vol. 22, No. 3, September 1977, pp. 374-376. doi:org/10.1016/S0030-4018(97)90032-8
[50] J. G. Gordon Ii, S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surface Science, Vol. 101, No. 1-3, December 1980, pp. 499-506. doi:org/10.1016/0039-6028(80)90644-5
[51] C. Nylander, B. Liedberg and T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sensors and Ac-tuators, Vol. 3, July 1982-1983, pp. 79-88. doi:org/10.1016/0250-6874(82)80008-5
[52] B. Liedberg, C. Nylander and I. Lunstr?m, “Surface Plasmon Resonance for Gas Detection and Biosensing,” Sensors and Actuators, Vol. 4, June 1983, pp. 299-304. doi:org/10.1016/0250-6874(83)85036-7
[53] K. Tiefenthaler, W. Lukosz, “Integrated Optical Switches and Gas Sensors,” Optics Letters, Vol. 9, No. 4, April 1984, pp. 137-139. doi:org/10.1364/OL.9.000137
[54] D. C. Cullen, R. G. W. Brown and C. R. Lowe, “Detection of Immuno-Complex Formation Via Surface Plasmon Resonance on Gold-Coated Diffraction Gratings,” Biosensors, Vol. 3, No. 4, November 1987, pp. 211-225.
[55] M. J. Jory, P. S. Vukusic and J. R. Sambles, “Develop-ment of a Prototype Gas Sensor Using Surface Plasmon Resonance on Gratings,” Sensors and Actuators B: Chemical, Vol. 17, No. 3, February 1994, pp. 203-209. doi:org/10.1016/0925-4005(93)00871-U
[56] R. Karlsson, A. Michaelsson and L. Mattsson, “Kinetic Analysis of Monoclonal Antibody-Antigen Interactions with a New Biosensor Based Analytical System,” Journal of Immunological Methods, Vol. 145, No. 1-2, December 1991, pp. 229-240. doi:org/10.1016/0022-1759(91)90331-9
[57] L. G. F?gerstam, ?. Frostell-Karlsson, R. Karlsson, B. Persson and I. R?nnberg, “Biospecific Interaction Analy-sis Using Surface Plasmon Resonance Detection Applied to Kinetic, Binding Site and Concentration Analysis,” Journal of Chromatography A, Vol. 597, No. 1-2, April 1992, pp. 397-410.
[58] R. C. Jorgenson, S. S. Yee, “A Fiber-Optic Chemical Sensor Based on Surface Plasmon Resonance,” Sensors and Actuators B: Chemical, Vol. 12, No. 3, April 1993, pp. 213-220. doi:org/10.1016/0925-4005(93)80021-3
[59] P. I. Nikitin, A. A. Beloglazov, “A Multi-Purpose Sensor Based on Surface Plasmon Polariton Resonance in a Schot- tky Structure,” Sensors and Actuators A: Physical, Vol. 42, No. 1-3, April 1994, pp. 547-552. doi:org/10.1016/0924-4247(94)80051-0
[60] S. G. Nelson, K. S. Johnston and S. S. Yee, “High Sensi-tivity Surface Plasmon Resonace Sensor Based on Phase Detection,” Sensors and Actuators B: Chemical, Vol. 35, No. 1-3, September 1996, pp. 187-191. doi:org/10.1016/S0925-4005(97)80052-4
[61] P. I. Nikitin, A. A. Beloglazov, M. V. Valeiko, J. A. Creighton, A. M. Smith, N. A. J. M. Sommerdijk and J. D. Wright, “Silicon-based surface plasmon resonance chem-ical sensors,” Sensors and Actuators B: Chemical, Vol. 38, No. 1-3, January-February 1997, pp. 53-57. doi:org/10.1016/S0925-4005(97)80171-2
[62] A. V. Kabashin, P. I. Nikitin, “Surface Plasmon Reson-ance Interferometer for Bio- and Chemical-Sensors,” Op-tics Communications, Vol. 150, No. 1-6, May 1998, pp. 5-8.
[63] H. P. Ho, W. W. Lam and S. Y. Wu, “Surface Plasmon Resonance Sensor Based on the Measurement of Diffe-rential Phase,” Review of Scientific Instruments, Vol. 73, No. 10, October 2002, pp. 3534-3539. doi:org/10.1063/1.1502016
[64] C.-M. Wu, S.-F. Joe and L.-B. Chang, “Interferometric Sensors Based on Surface Plasmon Resonance,” Optical Fibers and Sensors for Medical Applications Ⅱ, Vol. 4616, San Jose, January 2002, pp. 64-72.
[65] C.-M. Wu, Z.-C. Jian, S.-F. Joe and L.-B. Chang, “High-Sensitivity Sensor Based on Surface Plasmon Re-sonance and Heterodyne Interferometry,” Sensors and Actuators B: Chemical, Vol. 92, No. 1-2, July 2003, pp. 133-136. doi:org/10.1016/S0925-4005(03)00157-6
[66] S. Y. Wu, H. P. Ho, W. C. Law, Chinlon Lin and S. K. Kong, “Highly Sensitive Differential Phase-Sensitive Surface Plasmon Resonance Biosensor Based on the Mach– Zehnder Configuration,” Optics Letters, Vol. 29, No. 20, October 2004, pp. 2378-2380. doi:org/10.1364/OL.29.002378
[67] H. P. Ho, W. C. Law, S. Y. Wu, C. Lin and S. K. Kong, “Real-Time Optical Biosensor Based on Differential Phase Measurement of Surface Plasmon Resonance,” Biosensors and Bioelectronics, Vol. 20, No. 10, April 2005, pp. 2177-2180. doi:org/10.1016/j.bios.2004.09.011
[68] U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Lofas, B. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin and M. Malmqvist, “Real-time Bi-ospecific Interaction Analysis Using Surface-Plasmon Resonance and a Sensor Chip Technology,” Biotechniques, Vol. 11, No. 5, November 1991, pp. 620-622, 624-627.
[69] A. B. Goldfine, D. C. Simonson, F. Folli, E. Patti and C. R. Kahn, “In vivo and in vitro Studies of Vanadate in Human and Rodent Diabetes Mellitus,” Molecular and Cellular Biochemistry, Vol. 153, No. 1-2, December 1995, pp. 217-231. doi:org/10.1007/BF01075941
[70] A. B. Goldfine, D. C. Simonson, F. Folli, M. E. Patti and C. R. Kahn, “Metabolic Effects of Sodium Metavanadate in Humans with Insulin-Dependent and Noninsulin-De- Pendent-Diabetes-Mellitus in-vivo and in-vitro Studies,” Journal of Clinical Endocrinology & Metabolism, vol. 80, no. 11, November 1995, pp. 3311-3320. doi:org/10.1210/jc.80.11.3311
[71] R. Karlsson and R. Stahlberg, “Surface Plasmon Reson-ance Detection and Multispot Sensing for Direct Moni-toring of Interactions Involving Low-Molecular-Weight Analytes and for Determination of Low Affinities,” Ana-lytical Biochemistry, Vol. 228, No. 2, July 1995, pp. 274-280.
[72] H. Kobayashi, T. Endo, N. Ogawa, H. Nagase, M. Iwata and H. Ueda, “Evaluation of the Interaction between [be-ta]-Cyclodextrin and Psychotropic Drugs by Surface Plasmon Resonance Assay with a Biacore? System,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 54, No. 1, January 2011, pp. 258-263. doi:org/10.1016/j.jpba.2010.08.012
[73] G. Papalia, D. Myszka, “Exploring Minimal Biotinylation Conditions for Biosensor Analysis Using Capture Chips,” Analytical Biochemistry, Vol. 403, No. 1-2, August 2010, pp. 30-35. doi:org/10.1016/j.ab.2010.03.044
[74] J. M. Glück, B. W. Koenig and D. Willbold, “Nanodiscs Allow the Use of Integral Membrane Proteins as Analytes in Surface Plasmon Resonance Studies,” Analytical Bio-chemistry, Vol. 408, No. 1, January 2011, pp. 46-52. doi:org/10.1016/j.ab.2010.08.028
[75] R. Patel, B. A. Andrien Jr, “Kinetic Analysis of a Mo-noclonal Therapeutic Antibody and Its Single-Chain Homolog by Surface Plasmon Resonance,” Analytical Biochemistry, Vol. 396, No. 1, January 2010, pp. 59-68. doi:org/10.1016/j.ab.2009.08.034
[76] L. A. Chtcheglova, M. Vogel, H. J. Gruber, G. Dietler and A. Haeberli, “Kinetics of the INTERACTION of DesAABB–Fibrin Monomer with Immobilized Fibrino-gen,” Biopolymers, Vol. 83, No. 1, April 2006, pp. 69-82.
[77] C. Natori, J. I. Kim, S. H. Bhoo, Y. J. Han, H. Hanzawa, M. Furuya and P. S. Song, “Differential Interactions of Phytochrome A (Pr vs. Pfr) with Monoclonal Antibodies Probed by a Surface Plasmon Resonance Technique,” Photochemical & Photobiological Sciences, Vol. 6, No. 1, January 2007, pp. 83-89.
[78] J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong and R. Woodbury, “A Commercial Solution for Surface Plasmon Sensing,” Sensors and Actuators B: Chemical, Vol. 35, No. 1-3, September 1996, pp. 212-216. doi:org/10.1016/S0925-4005(97)80057-3
[79] J. Melendez, R. Carr, D. Bartholomew, H. Taneja, S. Yee, C. Jung and C. Furlong, “Development of a Surface Plasmon Resonance Sensor for Commercial Applications,” Sensors and Actuators B-Chemical, Vol. 39, No. 1-3, March-April 1997, pp. 375-379. doi:org/10.1016/S0925-4005(97)80237-7
[80] V. Nanduri, A. K. Bhunia, S.-I. Tu, G. C. Paoli and J. D. Brewster, “SPR Biosensor for the Detection of L. Mono-cytogenes Using Phage-Displayed Antibody,” Biosensors and Bioelectronics, Vol. 23, No. 2, September 2007, pp. 248-252. doi:org/10.1016/j.bios.2007.04.007
[81] “News and Market Update,” Biosensors and Bioelec-tronics, Vol. 13, No. 3-4, March 1998, pp. i-ii. doi:org/10.1016/S0956-5663(98)90033-1
[82] A. Saito, T. Konno, H. Ikake, K. Kurita and K. Ishihara, “Control of Cell Function on a Phospholipid Polymer Having Phenylboronic Acid Moiety,” Biomedical Mate-rials, Vol. 5, No. 5, October 2010, pp. 054101-054107.
[83] Y. Tang, R. Mernaugh and X. Zeng, “Nonregeneration Protocol for Surface Plasmon Resonance: Study of High- Affinity Interaction with High-Density Biosensors,” Analytical Chemistry, Vol. 78, No. 6, January 2006, pp. 1841-1848. doi:org/10.1021/ac051868g
[84] R. Karlsson, P. S. Katsamba, H. Nordin, E. Pol and D. G. Myszka, “Analyzing a Kinetic Titration Series Using Af-finity Biosensors,” Analytical Biochemistry, vol. 349, no. 1, February 2006, pp. 136-147. doi:org/10.1016/j.ab.2005.09.034
[85] H. H. Trutnau, “New Multi-Step Kinetics Using Common Affinity Biosensors Saves Time and sample At Full Access to Kinetics and Concentration,” Journal of Bio-technology, Vol. 124, No. 1, June 2006, pp. 191-195. doi:org/10.1016/j.jbiotec.2006.01.006
[86] T. Wink, J. de Beer, W. E. Hennink, A. Bult and W. P. van Bennekom, “Interaction between Plasmid DNA and Cationic Polymers Studied by Surface Plasmon Resonance Spectrometry,” Analytical Chemistry, Vol. 71, No. 4, January 1999, pp. 801-805. doi:org/10.1021/ac980679d
[87] S. R. Raz, M. Bremer, M. Giesbers and W. Norde, “De-velopment of a Biosensor Microarray Towards Food Screening, Using Imaging Surface Plasmon Resonance,” Biosensors & Bioelectronics, Vol. 24, No. 4, December 2008, pp. 552-557.
[88] C. Garcia-Aljaro, X. Munoz-Berbel, A. T. A. Jenkins, A. R. Blanch and F. X. Munoz, “Surface Plasmon Resonance Assay for Real-Time Monitoring of Somatic Coliphages in Wastewaters,” Applied and Environmental Microbiology, Vol. 74, No. 13, July 2008, pp. 4054-4058.
[89] D. Cui, X. Li, H. Cai, Y. Li, Z. Zheng and X. Chen, “De-velopment of Surface Plasmon Resonance (SPR) Bio-chemical Analysis Instrument,” Modern Scientific In-struments, Vol. 6, July 2001, pp. 34-38.
[90] M. Huang, Y. Shao, X. Sun, H. Chen, B. Liu and S. Dong, “Alternate Assemblies of Platinum Nanoparticles and Metalloporphyrins as Tunable Electrocatalysts for Dio-xygen Reduction,” Langmuir, Vol. 21, No. 1, December 2004, pp. 323-329.
[91] Y. Iwasaki, T. Horiuchi and O. Niwa, “Detection of Elec-trochemical Enzymatic Reactions by Surface Plasmon Resonance Measurement,” Analytical Chemistry, Vol. 73, No. 7, March 2001, pp. 1595-1598.
[92] H. Sota, Y. Hasegawa and M. Iwakura, “Detection of Conformational Changes in an Immobilized Protein Using Surface Plasmon Resonance,” Analytical Chemistry, Vol. 70, No. 10, April 1998, pp. 2019-2024.
[93] J. E. Gestwicki, H. V. Hsieh and J. B. Pitner, “Using Receptor Conformational Change To Detect Low Mole-cular Weight Analytes by Surface Plasmon Resonance,” Analytical Chemistry, Vol. 73, No. 23, November 2001, pp. 5732-5737.
[94] Y. Liu, P. Liao, Q. Cheng and R. J. Hooley, “Protein and Small Molecule Recognition Properties of Deep Cavitands in a Supported Lipid Membrane Determined by Calcination-Enhanced SPR Spectroscopy,” Journal of the American Chemical Society, Vol. 132, No. 30, July 2010, pp. 10383-10390.
[95] T. Kawaguchi, D. R. Shankaran, S. J. Kim, K. V. Gobi, K. Matsumoto, K. Toko and N. Miura, “Fabrication of a Novel Immunosensor Using Functionalized Self-Assem- bled Monolayer for Trace Level Detection of TNT by Surface Plasmon Resonance,” Talanta, Vol. 72, No. 2, April 2007, pp. 554-560.
[96] J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawa-fune, K. Tamaki and N. Sugimoto, “SPR Sensor Chip for Detection of Small Molecules Using Molecularly Im-printed Polymer with Embedded Gold Nanoparticles,” Analytical Chemistry, Vol. 77, No. 13, May 2005, pp. 4282-4285.
[97] A. G. Frutos, S. C. Weibel and R. M. Corn, “Near-Infrared Surface Plasmon Resonance Measurements of Ultrathin Films. 2. Fourier Transform SPR Spectroscopy,” Analytical Chemistry, Vol. 71, No. 18, August 1999, pp. 3935-3940.
[98] G. Arena, A. Contino, R. D’Agata, C. Sgarlata and G. Spoto, “Ordered Anchored Cavities at Work: A New and Rapid SPR-Based Method for the Detection of Trace Amounts of Cs+,” New Journal of Chemistry, Vol. 29, No. 11, September 2005, pp. 1393-1395.
[99] C. Zhao, Y. J. Song, J. S. Ren and X. G. Qu, “A DNA Nanomachine Induced by Single-Walled Carbon Nano-tubes on Gold Surface,” Biomaterials, Vol. 30, No. 9, March 2009, pp. 1739-1745.
[100] S. Boujday, C. Methivier, B. Beccard and C. M. Pradier, “Innovative Surface Characterization Techniques Applied to Immunosensor Elaboration and TEST: COMPARING the Efficiency of Fourier Transform-Surface Plasmon Resonance, Quartz Crystal Microbalance with Dissipation Measurements, and Polarization Modulation-Reflec- tion Absorption Infrared Spectroscopy,” Analytical Bio-chemistry, Vol. 387, No. 2, April 2009, pp. 194-201.
[101] R. F. Dutra, R. K. Mendes, V. Lins da Silva and L. T. Kubota, “Surface Plasmon Resonance Immunosensor for Human Cardiac Troponin T Based on Self-Assembled Monolayer,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 43, No. 5, April 2007, pp. 1744-1750.
[102] W. Hu, C. M. Li, X. Cui, H. Dong and Q. Zhou, “In Situ Studies of Protein Adsorptions on Poly (pyrrole-co-pyr- role propylic acid) Film by Electrochemical Surface Plasmon Resonance,” Langmuir, Vol. 23, No. 5, January 2007, pp. 2761-2767.
[103] A. Baba, R. C. Advincula and W. Knoll, “In Situ Investi-gations on the Electrochemical Polymerization and Prop-erties of Polyaniline Thin Films by Surface Plasmon Optical Techniques,” The Journal of Physical Chemistry B, Vol. 106, No. 7, January 2002, pp. 1581-1587.
[104] W. Hu, Z. Lu, Y. Liu and C. M. Li, “In Situ Surface Plasmon Resonance Investigation of the Assembly Process of Multiwalled Carbon Nanotubes on an Alkane-thiol Self-Assembled Monolayer for Efficient Protein Immobilization and Detection,” Langmuir, Vol. 26, No. 11, March 2010, pp. 8386-8391.
[105] C. C. Jung, S. B. Saban, S. S. Yee and R. B. Darling, “Chemical electrode surface Plasmon Resonance Sensor,” Sensors and Actuators B: Chemical, Vol. 32, No. 2, May 1996, pp. 143-147.
[106] S. Wang, E. S. Forzani and N. Tao, “Detection of Heavy Metal Ions in Water by High-Resolution Surface Plasmon Resonance Spectroscopy Combined with Anodic Stripping Voltammetry,” Analytical Chemistry, Vol. 79, No. 12, May 2007, pp. 4427-4432.
[107] Y. Iwasaki, T. Horiuchi, M. Morita and O. Niwa, “An- alysis of Electrochemical Processes Using Surface Plas-mon Resonance,” Sensors and Actuators B: Chemical, Vol. 50, No. 2, July 1998, pp. 145-148.
[108] D. D. Schlereth, “Characterization of Protein Monolayers by Surface Plasmon Resonance Combined with Cyclic Voltammetry ‘in Situ’,” Journal of Electroanalytical Chemistry, Vol. 464, No. 2, March 1999, pp. 198-207.
[109] Y. Iwasaki, T. Horiuchi, M. Morita and O. Niwa, “Elec-trochemical Reaction of Fe(CN)3-/4-6 on Gold Electrodes Analyzed by Surface Plasmon Resonance,” Surface Science, Vol. 427-428, No. June 1999, pp. 195-198.
[110] M. Manesse, V. Stambouli, R. Boukherroub and S. Szu- nerits, “Electrochemical Impedance Spectroscopy and Surface Plasmon Resonance Studies of DNA Hybridiza-tion on Gold/SiO Interfaces,” Analyst, Vol. 133, No. 8, July 2008, pp. 1097-1103.
[111] D. Kambhampati, P. E. Nielsen and W. Knoll, “Investi-gating the Kinetics of DNA-DNA and PNA-DNA Inte-ractions Using Surface Plasmon Resonance-Enhanced Fluorescence Spectroscopy,” Biosensors and Bioelec-tronics, Vol. 16, No. 9-12, December 2001, pp. 1109-1118.
[112] F. Yu, D. Yao and W. Knoll, “Surface Plasmon Field- Enhanced Fluorescence Spectroscopy Studies of the In-teraction between an Antibody and Its Surface-Coupled Antigen,” Analytical Chemistry, vol. 75, no. 11, May 2003, pp. 2610-2617.
[113] J. Zhu, “Enhanced Fluorescence from Dy3+ Owing to Surface Plasmon Resonance of Au Colloid Nanoparticles,” Materials Letters, Vol. 59, No. 11, May 2005, pp. 1413-1416.
[114] B. P. Nelson, A. G. Frutos, J. M. Brockman and R. M. Corn, “Near-Infrared Surface Plasmon Resonance Mea-surements of Ultrathin Films. 1. Angle Shift and SPR Imaging Experiments,” Analytical Chemistry, Vol. 71, No. 18, August 1999, pp. 3928-3934.
[115] S. Patskovsky, A. V. Kabashin, M. Meunier and J. H. T. Luong, “Near-Infrared Surface Plasmon Resonance Sensing on a Silicon Platform,” Sensors and Actuators B: Chemical, Vol. 97, No. 2-3, February 2004, pp. 409-414.
[116] A. V. Kabashin, P. I. Nikitin, “Interferometer Based on a Surface-Plasmon Resonance for Sensor Applications,” Quantum Electronics, Vol. 27, No. 7, April 1997, pp. 653-654.
[117] X. Q. Chen, Q. A. Lv, “Phase-Shift Interferometry Com-bined with Surface Plasmon Resonance Effect for Two-Di- Mensional Bio-Surface Analysis,” Op-tik-International Journal for Light and Electron Optics, Vol. 121, No. 9, May 2010, pp. 818-820.
[118] T. Hayano, Y. Yamauchi, K. Asano, T. Tsujimura, S. Hashimoto, T. Isobe and N. Takahashi, “Automated SPR- LC-MS/MS System for Protein Interaction Analysis,” Journal of Proteome Research, Vol. 7, No. 9, September 2008, pp. 4183-4190.
[119] E. C. A. Stigter, G. J. de Jong and W. P. van Bennekom, “Development of an On-Line SPR-Digestion-NanoLC- MS/ MS System for the Quantification and Identification of Interferon-Gamma in Plasma,” Biosensors & Bioelec-tronics, Vol. 24, No. 7, March 2009, pp. 2184-2190.
[120] P.-?. Ohlsson, T. Tj?rnhage, E. Herbai, S. L?f?s and G. Puu, “Liposome and Proteoliposome Fusion onto solid Substrates, Studied Using Atomic Force Microscopy, Quartz Crystal Microbalance and Surface Plasmon Re-sonance. Biological Activities of Incorporated Compo-nents,” Bioelectrochemistry and Bioenergetics, Vol. 38, No. 1, August 1995, pp. 137-148.
[121] A. Bund, A. Baba, S. Berg, D. Johannsmann, J. Lübben, Z. Wang and W. Knoll, “Combining Surface Plasmon Resonance and Quartz Crystal Microbalance for the in Situ Investigation of the Electropolymerization and Dop-ing/Dedoping of Poly(pyrrole),” The Journal of Physical Chemistry B, Vol. 107, No. 28, June 2003, pp. 6743-6747.
[122] R. Schweiss, J. F. Lübben, D. Johannsmann and W. Knoll, “Electropolymerization of Ethylene Dioxythiophene (EDOT) in Micellar Aqueous Solutions Studied by Elec-tro-Chemical Quartz Crystal Microbalance and Surface Plasmon Resonance,” Electrochimica Acta, Vol. 50, No. 14, May 2005, pp. 2849-2856.
[123] D. G. Hanken, R. M. Corn, “Electric Fields and Interfe-rence Effects inside Noncentrosymmetric Multilayer Films at Electrode Surfaces from Electrochemically Modulated Surface Plasmon Resonance Experiments,” Analytical Chemistry, Vol. 69, No. 18, September 1997, pp. 3665- 3673.
[124] R. Georgiadis, K. A. Peterlinz, J. R. Rahn, A. W. Peterson and J. H. Grassi, “Surface Plasmon Resonance Spec-troscopy as a Probe of In-Plane Polymerization in Mono-layer Organic Conducting Films,” Langmuir, Vol. 16, No. 17, July 2000, pp. 6759-6762.
[125] V. Chegel, O. Raitman, E. Katz, R. Gabai and I. Willner, “Photonic Transduction of Electrochemically-Triggered Redox-Functions of Polyaniline Films Using Surface Plasmon Resonance Spectroscopy,” Chemical Commu-nications, No. 10, April 2001, pp. 883-884.
[126] A. Baba, J. Lübben, K. Tamada and W. Knoll, “Optical Properties of Ultrathin Poly(3,4-ethylenedioxythiophene) Films at Several Doping Levels Studied by In Situ Elec-trochemical Surface Plasmon Resonance Spectroscopy,” Langmuir, Vol. 19, No. 21, September 2003, pp. 9058- 9064.
[127] M. Riskin, B. Basnar, V. I. Chegel, E. Katz, I. Willner, F. Shi and X. Zhang, “Switchable Surface Properties through the Electrochemical or Biocatalytic Generation of Ag0 Nanoclusters on Monolayer-Functionalized Electrodes,” Journal of the American Chemical Society, Vol. 128, No. 4, January 2006, pp. 1253-1260.
[128] A. K. Sheridan, P. Ngamukot, P. N. Bartlett and J. S. Wilkinson, “Waveguide Surface Plasmon Resonance Sensing: Electrochemical Desorption of Alkane Thiol Monolayers,” Sensors and Actuators B: Chemical, Vol. 117, No. 1, September 2006, pp. 253-260.
[129] F. Mirkhalaf, D. J. Schiffrin, “Metal-Ion Sensing by Sur-face Plasmon Resonance on Film Electrodes,” Journal of Electroanalytical Chemistry, Vol. 484, No. 2, April 2000, pp. 182-188.
[130] Rajan, S. Chand and B. D. Gupta, “Fabrication and Cha-racterization of a Surface Plasmon Resonance Based Fi-ber-Optic Sensor for Bittering Component—Naringin,” Sensors and Actuators B: Chemical, Vol. 115, No. 1, May 2006, pp. 344-348.
[131] M. Péter, M. A. Hempenius, E. S. Kooij, T. A. Jenkins, S. J. Roser, W. Knoll and G. J. Vancso, “Electrochemically Induced Morphology and Volume Changes in Surface- Grafted Poly(ferrocenyldimethylsilane) Monolayers,” Langmuir, Vol. 20, No. 3, January 2004, pp. 891-897.
[132] X. Yao, J. Wang, F. Zhou, J. Wang and N. Tao, “Quanti-fication of Redox-Induced Thickness Changes of 11- Ferrocenylundecanethiol Self-Assembled Monolayers by Electrochemical Surface Plasmon Resonance,” The Journal of Physical Chemistry B, Vol. 108, No. 22, April 2004, pp. 7206-7212.
[133] F. S. Damos, R. C. S. Luz and L. T. Kubota, “Determina-tion of Thickness, Dielectric Constant of Thiol Films, and Kinetics of Adsorption Using Surface Plasmon Reson-ance,” Langmuir, Vol. 21, No. 2, January 2005, pp. 602-609.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.