A Tiling Lemma and Its Application to the Ratio Test for Convergence of Series

DOI: 10.4236/apm.2011.15055   PDF   HTML     5,383 Downloads   9,931 Views  


We prove that any collection which tiles the positive integers must contain one of two types of sub-collections. We then use this result to prove a variation of the Ratio Test for convergence of series. This version of the Ratio Test shows the convergence of certain series for which the Root Test (which is known to be more powerful than the conventional Ratio Test) fails. This version of the Ratio Test is also used to prove a version of the Banach Contraction Principle for self-maps of a complete metric space.

Share and Cite:

J. Stein Jr. and L. Ho, "A Tiling Lemma and Its Application to the Ratio Test for Convergence of Series," Advances in Pure Mathematics, Vol. 1 No. 5, 2011, pp. 300-304. doi: 10.4236/apm.2011.15055.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. R. Jachymski, Schroder, Bernd; Stein, D., James Jr., “A connection between fixed-point theorems and tiling problems,” Journal of Combinatorial Theory, Series A, Vol. 87, No. 2, 1999, pp. 273-286. doi:10.1006/jcta.1998.2960
[2] W. Rudin, “Principles of Mathematical Analysis,” McGraw-Hill, New York, 1964.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.