Thermodynamic Properties of Semiconductors with Defects

DOI: 10.4236/msa.2011.29166   PDF   HTML     4,525 Downloads   7,563 Views   Citations


Thermodynamic properties of diamond cubic and zinc-blende semiconductors with point defects are considered by the statistical moment method (SMM). The thermal expansion coefficient, the specific heats at constant volume and those at constant pressure, CV and CP, and the isothermal compressibility are derived analytically for semiconductors with defects. The SMM calculated thermodynamic quantities of the Si, and GaAs semiconductors with defects are in good agreement with the experimental results.

Share and Cite:

V. Hung and L. Thanh, "Thermodynamic Properties of Semiconductors with Defects," Materials Sciences and Applications, Vol. 2 No. 9, 2011, pp. 1225-1232. doi: 10.4236/msa.2011.29166.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. Bimberg, M. Grundman, and N. N. Ledentsov, “Quantum Dot Heterostructures,” Wiley, New York, 2001.
[2] A. L. Efros, D. J. Lockwood and L. Tsybeskov, (Eds.), “Semi-conductor Nanocrystals, from Basic Principles to Applications,” Klwer-Acadimic/Plenum, New York, 2003.
[3] K. Chung and J. B. Xia, “Spatially Separated Excitons in Quantum-Dot Quantum Well Structures” Physical Review B, Vol. 57, No. 16, 1998, pp. 9780-9786. doi:10.1103/PhysRevB.57.9780
[4] X. R. Qin, B. S. Swartzentruber and M. G. Lagally, “Scanning Tunneling Microscopy Identification of Atomic-Scale Inter-mixing on Si(100) at Submonolayer Ge Coverages,” Physical Review Letters, Vol. 84, No. 20, 2000, pp. 4645-4648. doi:10.1103/PhysRevLett.84.4645
[5] M. T. Yin and M. L. Cohen, “Theory of Lattice-Dy- namical Properties of Solids: Application to Si and Ge,” Physical Re-view B, Vol. 26, No. 6, 1982, pp. 3259-3272. doi:10.1103/PhysRevB.26.3259
[6] M. T. Yin, and M. L. Cohen, “Theory of Static Structural Prop-erties, Crystal Stability, and Phase Transformations: Applica-tion to Si and Ge,” Physical Review B, Vol. 26, No. 10, 1982, pp. 5668-5687. doi:10.1103/PhysRevB.26.5668
[7] M. T. Yin, and M. L. Cohen, “Theory of Ab Initio Pseudopo-tential Calculations,” Physical Review B, Vol. 25, No. 12, 1982, pp. 7403-7412. doi:10.1103/PhysRevB.25.7403
[8] O. Sugino, and R. Car, “Ab Initio Molecular Dynamics Study of First-Order Phase Transitions: Melting of Silicon,” Physical Review Letters, Vol. 74, No. 10, 1995, pp. 1823-1826. doi:10.1103/PhysRevLett.74.1823
[9] P. Focher, G. L. Chiarotti, M. Bernasconi, E. Tosatti and M. Parrimello, “Structural Phase Transformations via First-Principles Simulation,” Europhysics Letters, Vol. 26, No. 5, 1994, pp. 345-351. doi:10.1209/0295-5075/26/5/005
[10] V. V. Hung, K. Masuda-Jindo and P. T. M. Hanh, “Application of the Statistical Moment Method to Thermodynamic Quantities of Silicon,” Journal of Physics: Condensed Matter, Vol. 18, No. 1, 2006, pp. 283-293. doi:10.1088/0953-8984/18/1/021
[11] V. V. Hung, K. Masuda-Jindo, P. T. M. Hanh and N. T. Hai, “Equation of States and Melting Temperatures of Diamond Cubic and Zinc-Blende Semiconductors: Pressure Dependence,” Journal of Physics: Conference Series, Vol. 98, 2008, pp. 032001-032006.
[12] N. Tang and V. V. Hung, “Investigation of the Thermodynamic Properties of Anharmonic Crystals by the Moment Method: I. General Results for Face-Centred Cubic Crystals,” Physica Status Solidi B, Vol. 149, No. 2, 1988, pp. 511-519. doi:10.1002/pssb.2221490212
[13] N. Tang and V. V. Hung, “Investigation of the Thermo- dynamic Properties of Anharmonic Crystals by the Moment Method: III. Thermodynamic Properties of the Crystals at Various Pressures,” Physica Status Solidi (B), Vol. 162, No. 2, 1990, pp. 371-377. doi:10.1002/pssb.2221620206
[14] K. Masuda-Jindo, V. V. Hung and P. D. Tam, “Thermodynamic Quantities of Metals Investigated by an Analytic Statistical Moment Method,” Physical Review B, Vol. 67, 2003, pp. 094301-094315. doi:10.1103/PhysRevB.67.094301
[15] V. V. Hung, N. T. Hai and N. Q. Bau, “Investigation of the Thermodynamic Properties of Anharmonic Crystals with Defects by the Moment Method,” Journal of the Physical Society of Japan, Vol. 66, No. 11, 1997, pp. 3494-3498. doi:10.1143/JPSJ.66.3494
[16] V. V Hung, Jaichan Lee, K. Masuda-Jindo and P. T. T. Hong, “Study of Self-Diffusion in Silicon at High Pressure,” Journal of the Physical Society of Japan, Vol. 75, No. 2, 2006, pp. 024601-024608. doi:10.1143/JPSJ.75.024601
[17] V. V. Hung, P. T. T. Hong and N. T. Hai, “Study of Self- Diffusion in GaAs Crystal: Temperature Dependence,” Communications in Physics, Vol. 20, No. 3, 2010, pp. 227-231.
[18] S. Erkoc, “Empirical Many-Body Potential Energy Functions Used in Computer Simulations of Condensed Matter Properties,” Physics Reports, Vol. 278, No. 2, 1997, pp. 79-105. doi:10.1016/S0370-1573(96)00031-2
[19] D. E. Gray, “American Institute of Physics Handbook,” Second Edition, McGraw-Hill, New York, 1963, pp. 466-451.
[20] M. P. Shaskolskoi, “Acoustic Crystals,” Science, Moscow, 1982.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.