Curie Temperature of Non-Stoichiometric Ni-Doped Lithium Tantalate

DOI: 10.4236/jmp.2011.29134   PDF   HTML     3,799 Downloads   7,733 Views  


Ceramics of Li0.98?xTa1.004?x/5O3 solid solutions with 0 ≤ x ≤ 0.20 are studied by a new theoretical approach. From the experience, we have proposed the new vacancy models which are able to describe substitutional mechanism in Ni-doped lithium tantalate. Calculations of the Curie temperature in Ni-doped non stoichiometric lithium tantalate reveal good correspondence with experimental results. The substitution mechanism of the doped compositions Ni in LiTaO3 crystal is discussed. So, the mechanism of phase transition due to thermal expansion of crystal is described.

Share and Cite:

K. Maaider, A. Jennane, N. Masaif and A. Khalil, "Curie Temperature of Non-Stoichiometric Ni-Doped Lithium Tantalate," Journal of Modern Physics, Vol. 2 No. 9, 2011, pp. 1093-1097. doi: 10.4236/jmp.2011.29134.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Y. Fujino, H. Tsuya and K. Sugibuchi, “Electrooptic and Fer-roelectric Properties of Lithium Tantalate Single Crystals as a Function of Melt Composition,” Ferroelectrics, Vol. 2, No. 1, 1971, pp. 113-117.
[2] M. E. Lines and A. M. Glass, “Principles and Application of Ferroelectrics and Related Materials,” Clarendon Press, Oxford, 1979.
[3] S. C. Abrahams and E. T. Keve, “Structural Basis of Ferroelec-tricity and Ferroelasticity,” Ferroelectrics, Vol. 2, 1971, pp. 129-154.
[4] M. Paul, M. Tabuchi and A. R. West, “Defect Structure of Ni, Co-Doped LiNbO3 and LiTaO3,” Chemistry of Materials, Vol. 9, No. 12, 1997, pp. 3206-3214. doi:10.1021/cm970511t
[5] A. A. Ballman, H. J. Livinstein, C. D. Cupio and H. J. Brown, “Curie Temperature and Birefringence Variation in Ferroelectric Lithium Metatantalate as a Function of Melt Stoichiometry,” American Ceramic Society, Vol. 50, No. 12, 1967, pp. 657-659.
[6] Y. Torii, T. Sekiya, T.Yamamoto, K. Koyabachi and Y. Abe, “The Curie Temperature is Closely Related with the Axial Ratio c/a of the Hexagonal Cell,” Materials Research Bulletin, Vol. 18, 1983, pp. 1569-1574. doi:10.1016/0025-5408(83)90199-X
[7] N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hay- achi, H. Asano and S. Kimura, “Comparative Study of Defect Structures in Lithium Niobate with Different Compositions,” Journal of Solid State Chemistry, Vol. 101, No. 2, 1992, pp. 340-352. doi:10.1016/0022-4596(92)90189-3
[8] S. C. Abrahams and P. Marsh, “Defect Structure Depend- ence on Composition in Lithium Niobate,” Acta Crystallographica Section B, Vol. 42, No. 1, 1986, pp. 61-68.
[9] N. Masaif, S. Jebbari, F. Bennani, M. Hafid and A. Jen- nane, “Experimental and Analytical Study of Defect Structures in Nonstoichiometric Lithium Tantalate and Lithium Niobate,” Physica Status Solidi (B), Vol. 240, No. 3, 2003, pp. 1-9. doi:10.1002/pssb.200301895
[10] N. Masaif, S. Jebbari, F. Bennani and A. Jennane, “New Study of Defect Structure in Nonstoichiometric Lithium Tantalate,” Ferroelectrics Letters Section, Vol. 32, No. 1-2, 2005, pp. 7-22. doi:10.1080/07315170590963662
[11] J. A. Allemann, Y. Xia, R. E. Morriss, A. P. Wilkinson, H. Eckert, J. S. Speck, C. G. Levi, F. F. Lange and S. Anderson, “Crystallization Behavior of Li1–5x Ta1+xO3 Glasses Synthesized from Liquid Precursors,” Journal of Materials Research, Vol. 11, No. 9, 1996, pp. 2376-2387. doi:10.1557/JMR.1996.0301
[12] N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa and M. Sato, “Defect Structure Model of MgO-Doped LiNbO3,” Journal of Solid State Chemistry, Vol. 118, No. 1, 1995, pp. 148-152. doi:10.1006/jssc.1995.1323
[13] G. Joo, J. Ravez and P. Hagenmuller, “Crystallographic and Dielectric Properties of LiTaO3-Based Non-Stoichio- metric Solid Solutions Substituted by Trivalentions,” Rev. Chim. Mine-rale, Vol. 22, No. 1, 1985, pp. 18-23.
[14] F. Abdi, M. Aillerie, P. Bourson and M. D. Fontana, “Defect Structure in Mg-doped LiNbO3,” Journal of Applied Physics, Vol. 106, No. 3, 2009, pp. 519-524. doi:10.1063/1.3190534
[15] M. E. Lines and A. M. Glass, “Principles and Application of Ferroelectrics and Related Materials,” Clarendon Press, Oxford, 1977.
[16] T. Katsumata, K. Shibata and H. Imagawa, “Lattice Parameters and Curie Temperature of Sintered Magnesium Doped Lithium Niobate,” Materials Research Bulletin, Vol. 29, No. 5, 1994, pp. 559-566. doi:10.1016/0025-5408(94)90046-9
[17] F. Bennani and E. Husson, “Impedance Spectroscopy Analysis of Pure and Ni-Doped Lithium Tantalate,” Journal of the Eu-ropean Ceramic Society, Vol. 21, No. 7, 2001, pp. 847-854. doi:10.1016/S0955-2219(00)00285-5
[18] S. C. Abrahams, J. M. Reddy and J. L. Bernstein, “Ferro- elec-tric Lithium Niobate. 3. Single Crystal X-Ray Diffraction Study at 24?C,” Journal of Physics and Chemistry of Solids, Vol. 27, No. 6-7, 1966, pp. 997-1012. doi:10.1016/0022-3697(66)90072-2
[19] A. Huanosta and A. R. West, “The Electrical Properties of Ferroelectric LiTaO3 and Its Solid Solutions,” Journal of Applied Physics, Vol. 61, No. 12, 1987, pp. 5386-5392. doi:10.1063/1.338279

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.