Neural correlates of focused attention in cognitively normal older adults
Jennifer R. Bowes, Patrick Stroman, Angeles Garcia
.
DOI: 10.4236/wjns.2011.12003   PDF    HTML     6,050 Downloads   13,856 Views   Citations

Abstract

Focused attention (FA) is among the cognitive functions that decline with aging. The Stroop task was used to investigate the neural correlates underlying FA in cognitively normal older adults. Twenty-one participants underwent a novel functional magnetic resonance imaging (fMRI) verbal Stroop task paradigm. Colour words were printed in an incongruent ink colour. Series 1 consisted of four blocks “Read the word” followed by four blocks “Say the colour of the ink”; Series 2 alternated between the two conditions. Functional data were analyzed using SPM5 to detect anatomical areas with significant signal intensity differences between the conditions. Within-group analyses of the “Say the colour of the ink” minus “Read the word” contrast yielded significant activation in the left supplementary motor area, bilateral inferior frontal gyrus, bilateral precentral gyrus, left insula and right superior frontal gyrus (p < 0.05, uncorrected). These results, using verbal responses, are consistent with previous manual modality Stroop-fMRI studies in older adults. Verbal responses may provide a more suitable modality for older adults and certain patient populations.

Share and Cite:

Bowes, J. , Stroman, P. and Garcia, A. (2011) Neural correlates of focused attention in cognitively normal older adults. World Journal of Neuroscience, 1, 19-27. doi: 10.4236/wjns.2011.12003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Spieler, D.H., Balota, D.A. and Faust, M.E. (1996) Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer’s type. Journal of Experimental Psychology: Human Perception and Performance, 22, 461-479. doi:10.1037/0096-1523.22.2.461
[2] Whelihan, W.M. and Lesher, E.L. (1985) Neuropscyhological changes in frontal functions with aging. Developmental Neuropsychology, 1, 371-380. doi:10.1080/87565648509540321
[3] Johnson, A. and Proctor, R.W. (2004) Attention theory and practice. SAGE Publications, Inc., Thousand Oak
[4] Kane, M.J. and Engle, R.W. (2003) Working-memory capacity and the control of attention: The contribution of goal neglect, response competition, and task set to Stroop interferences. Journal of Experimental Psychology General, 132, 47-70. doi:10.1037/0096-3445.132.1.47
[5] Townsend, J., Adamo, M. and Haist, F. (2006) Changing channels: An fMRI study of aging and cross-modal attention shifts. NeuroImage, 31, 1682-1692. doi:10.1016/j.neuroimage.2006.01.045
[6] Stroop, O.R. (1935) Studies of interference in serial verbal reaction. Journal of Experimental Psychology, 18, 643-662. doi:10.1037/h0054651
[7] Leung, H.-C., Skudlarski, P., Gatenby, J.C., Peterson, B. S. and Gore, J.C. (2000) An Event-related functional MRI study of the stroop color word interference task. Cerebral Cortex, 10, 552-560. doi:10.1093/cercor/10.6.552
[8] Milham, M.P., Erikson, K.I. Banich, M.T., Kramer, A.F., Webb, A., Wszalek, T. and Cohen, N.J. (2002) Attentional control in the aging brain: Insights from an fMRI Study of the stroop task. Brain and Cognition, 49, 277- 296. doi:10.1006/brcg.2001.1501
[9] Zysset, S., Schroeter, M.L., Neumann, J. and Von Cramon, D.Y. (2007) Stroop interference, hemodynamic response and aging: An event-related fMRI study. Neurobiology of Aging, 28, 937-946. doi:10.1016/j.neurobiolaging.2006.05.008
[10] Langenecker, S.A., Nielson, K.A. and Rao, S.M. (2004) fMRI of healthy older adults during Stroop interference. NeuroImage, 21, 192-200. doi:10.1016/j.neuroimage.2003.08.027
[11] Folstein, M., Folstein, S. and McHugh, P.R. (1975) Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatry Research, 12, 189-198. doi:10.1016/0022-3956(75)90026-6
[12] Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J.L. and Chertkow, H. (2005) The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695-699. doi:10.1111/j.1532-5415.2005.53221.x
[13] Mattis, S. (1988) Dementia rating scale. Professional manual. Psychological Assessment Resources, Odessa.
[14] Army Individual Test Battery (1944) Manual of directions and scoring. War Department, Adjunct General’s Office, Washington, DC
[15] Delis, D.C., Kramer, J.H., Kaplan, E. and Ober, B.A. (1987) California verbal learning test: Adult version manual. The Psychological Corporation, San Antonia.
[16] Ashburner, J. and Friston, K.J. (2005) Unified segmetation. Neuroimage, 26, 839-851. doi:10.1016/j.neuroimage.2005.02.018
[17] Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D. and Frackowiak, R.S.J. (1994) Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189-210. doi:10.1002/hbm.460020402
[18] Rorden, C. and Brett, M. (2000) Stereotaxic display of brain lesions. Behavioural Neurology, 12, 191-200.
[19] Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B. and Joliot, M. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273-289. doi:10.1006/nimg.2001.0978
[20] Johnstone, T., Ores Walsh, K.S., Greischar, L.L., Alexander, A.L., Fox, A.S., Davidson, R.J. and Oakes, T.R. (2006) Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Human Brain Mapping, 27, 779-788. doi:10.1002/hbm.20219
[21] Adleman, N.E., Menon, V., Blasey, C.M., White, C.D., Warsofsky, I.S., Glover, G.H. and Reiss, A.L. (2002) A developmental fMRI study of the Stroop color-word task. NeuroImage, 16, 61-75. doi:10.1006/nimg.2001.1046
[22] Egner, T. and Hirsh, J. (2005) The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage, 24, 539-547. doi:10.1016/j.neuroimage.2004.09.007
[23] Banich, M.T., Milham, M.P., Jacobson, B.L., Webb, A., Wszalek, T., Cohen, N.J. and Kramer, A.F. (2001) Attentional selection and the processing of task-irrelevant information: Insights from fMRI examinations of the Stroop task. Progress in Brain Research, 134, 459-470. doi:10.1016/S0079-6123(01)34030-X
[24] Mead, L.A., Mayer, A.R., Bobholz, J.A., Woodley, S.J., Cunningham, J.M., Hammeke, T.A. and Rao, S.M. (2002) Neural basis of the Stroop interference task: Response competition or selective attention? Journal of the International Neuropsychological Society, 8, 735-742. doi:10.1017/S1355617702860015
[25] Taylor, S.F., Korblum, S., Lauber, E.J., Minoshima, S. and Koeppe, R.A. (1997) Isolation of specific interference processing in the Stroop task: PET activation studies. NeuroImage, 6, 81-92. doi:10.1006/nimg.1997.0285
[26] Paus, T. (1996) Location and function of the human frontal eye-field: A selective review. Neuropsychologia, 34, 475-483. doi:10.1016/0028-3932(95)00134-4
[27] Corbetta, M. (1998) Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems. Proceedings of the National Academy of Sciences, USA, 95, 831-838. doi:10.1073/pnas.95.3.831
[28] Riecker, A., Mathiak, K., Wildgruber, D., Erb, M., Hertrich, I., Grodd, W. and Ackermann, H. (2005) fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology, 64, 700-706. doi:10.1212/01.WNL.0000152156.90779.89
[29] Alario, F., Chainay, H., Lehericy, S. and Cohen, L. (2006) The role of the supplementary motor area (SMA) in word production. Brain Research, 1076, 129-143. doi:10.1016/j.brainres.2005.11.104
[30] Derrfuss, J., Brass, M., Neumann, J. and von Cramon, D. Y. (2005) Involvement of the inferior frontal junction in cognitive control: Meta-analyses of switching and Stroop studies. Human Brain Mapping, 25, 22-34. doi:10.1002/hbm.20127
[31] Banich, M.T., Milham, M.P., Atchley, R., Cohen, N.J., Webb, A., Wszalek, T., Kramer, A.F., Liang, Z., Wright, A., Shenker, J. and Magin, R. (2000). fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience, 12, 988-1000. doi:10.1162/08989290051137521
[32] Price, C.J., Moore, C.J. and Frackowiak, R.S. (1996) The effect of varying stimulus rate and duration on brain activity during reading. NeuroImage, 3, 40-52. doi:10.1006/nimg.1996.0005
[33] Melcher, T. and Gruber, O. (2006) Oddball and incongruity effects during Strop task performance: A comparative fMRI study on selective attention. Brain Research, 1121, 136-149. doi:10.1016/j.brainres.2006.08.120
[34] Parasuraman, R., Greenwood, P.M. and Sunderland, T. (2002) The apolipoprotein E gene, attention and brain function. Neuropsychology, 16, 254-274. doi:10.1037/0894-4105.16.2.254

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.