Synthesis and Properties of Polythiophène Benzylidene and Their Photovoltaic Applications

Abstract

Research on organic solar cells has a craze importance because they show very interesting properties including their flexibility and the opportunity to be made into large surfaces. However, their stability and performance should be significantly improved compared to their current state. A nominal output of around 10% will be the goal for the coming years. The use of organic materials for photovoltaic applications is the subject of intense research in recent years. This work is based in part on the development of new conjugated polymers. In this paper, we present the synthesis and characterization of poly [(thiophene-2,5-diyl)-co-(benzylidene)] PTB catalysed by Maghnite-H+, used in the active layer of the solar cell organic heterojunction with PCBM (derivative of C60) was used as a junction of the solar cell: Glas/ITO/BCP/C60/PTB/Au/Al. A current density of short circuit of about Jcc 0.1mA/cm² was obtained for this structure with a yield of around 0.15%.

Share and Cite:

R. Abdelkarim, A. Yahiaoui, A. Hachemaoui, M. Belbachir and A. Khelil, "Synthesis and Properties of Polythiophène Benzylidene and Their Photovoltaic Applications," Materials Sciences and Applications, Vol. 2 No. 8, 2011, pp. 1014-1021. doi: 10.4236/msa.2011.28137.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. J. Heeger, “Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials Angew. Chem Int Ed Engl,” National Center for Biotechnology Information, Vol. 40, July 2001, pp. 2591-2611.
[2] L. Liao, A. Cirpan, Q. Chu, F. E. Karase and Y. J. Pang, “Synthesis and Optical Properties of Light-Emitting π-Conjugated Polymers Containing Biphenyl and Dithienosilole,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 45, No. 10, May 2007, pp. 2048-2058. doi:org/10.1002/pola.21970
[3] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science, Vol. 270, No. 5423, December 1995, pp. 1789-1791. doi:org/10.1126/science.270.5243.1789
[4] E. J. Zhou, Z. A. Tan, Y. J. He, C. H. Yang and Y. F. Li, “Synthesis, Hole Mobility and Photovoltaic Properties of Two Alternating Poly[3-(hex-1-enyl)thiophene-co-thioph- ene]s,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 45, February 2007, pp. 629-638.
[5] T. T. M. Dang, S. J. Park, J. W. Park, D. S. Chung, C. E. Park, Y. H. Kim and S. K. Kwon, “Synthesis and Characterization of Poly(benzodithiophene) Derivative for Organic Thin Film Transistors,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 45, November 2007, pp. 5277-5284. doi:org/10.1002/pola.22272
[6] E. Lim, Y. M. Kim, J. I. Lee, B. J. Jung, N. S. Cho, J. Lee, L. M. Do and H. K. Shim, “Relationship between the Liquid Crystallinity and Field-Effect-Transistor Behavior of Fluorene–Thiophene-based Conjugated Copolymers,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 44, August 2006, pp. 4709-4721. doi:org/10.1002/pola.21586
[7] W. S. Shin, S. C. Kim, S.J. Lee, H.S. Jeon, M. K. Kim, B.V.K. Naidu, S.H. Jin, J.K. Lee, J.W. Lee, Y.S. Gal, "Synthesis and photovoltaic properties of a low-band-gap polymer consisting of alternating thiophene and benzothiadiazole derivatives for bulk-heterojunction and dye-sensitized solar cells,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 45, April 2007, pp. 1394-1402. doi:org/10.1002/pola.21909
[8] M. Reyes-Reyes, K. Kim and D. L. Carroll, “High-Efficie- ncy Photovoltaic Devices based on Annealed Poly(3-hexyl- thio-phene) and 1-(3-Methoxycarbonyl)- Propyl-1-Phenyl- (6,6) C61 Blends,” Applied Physics Letters, Vol. 87, August 2005, pp. 83506-83508. doi:org/10.1063/1.2006986
[9] F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory and S. Bailly, “Remi de Bettignies, Stephane Guillerez, Christophe Defranoux, Modeling the Short-Circuit Current Density of Polymer Solar Cells based on P3HT: PCBM Blend,” Solar Energy Materials and Solar Cells, Vol. 91, No. 5-6, 2007, pp. 405-410. doi:org/10.1016/j.solmat.2006.10.019
[10] W. L. Ma, C. Y. Yang, X. Gong, K. Lee and A. J. Heeger, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology,” Advanced Functional Materials, Vol. 15, October 2005, pp. 1617-1622. doi:org/10.1002/adfm.200500211
[11] J. H. Hou, Z. A. Tan, Y. J. He, C. H. Yang and Y. F. Li, “Branched Poly(thienylene vinylene)s with Absorption Spectra Covering the Whole Visible Region,” Macromolecules, Vol. 39, No. 14, July 2006, pp. 4657-4662. doi:org/10.1021/ma060662u
[12] J. H. Hou, Z. A. Tan, Y. Yan, Y. J. He, C. H. Yang and Y. F. Li, “Synthesis and Photovoltaic Properties of Two-Dim- ensional Conjugated Polythiophenes with Bi(thienylenev- inylene) Side Chains,” Journal of American Chemical Society, Vol. 128, No. 14, April 2006, pp. 4911-4916. doi:org/10.1021/ja060141m
[13] C. J. Shi, Y. Yao, Y. Yang and Q. B. Pei, “Regioregular Copolymers of 3-Alkoxythiophene and Their Photovoltaic Application,” Journal of American Chemical Society, Vol. 128, No. 27, July 2006, pp. 8980-8986. doi:org/10.1021/ja061664x
[14] F. L. Zhang, M. Johansson, M. R. Andersson, J. C. Hummelen and S. O. Ingana, “Polymer Solar Cells based on MEH-PPV and PCBM,” Synth MetZhang, Vol. 137, April 2003, pp. 1401-1402. doi:org/10.1016/S0379-6779(02)01059-7
[15] K. F. Cheng, C. L. Liu and W. C. Chen, “Small Band Gap Conjugated Polymers based on Thiophene-Thienopyra- zine Copolymers,” Journal of American Chemical Society, Vol. 45, October 2007, pp. 5872-5883. doi:org/10.1002/pola.22339
[16] M. R. Andersson, O. W. Thomas, Mammo, M. Svensson, M. Theander and S. O. Ingana, “Substituted PolythioPhenes Designed for Optoelectronic Devices and Conductors,” Journal of Material Chemistry, Vol. 9, 1999, pp. 1933-1940. doi:org/10.1039/a902859e
[17] E. Perzon, X. J. Wang, S. Admassie, S. O. Ingana and M. R. Andersson, “An alternating Low Band-Gap Polyfluorene for Optoelectronic Devices,” Polymer, Vol. 47, May 2006, pp. 4261-4268. doi:org/10.1016/j.polymer.2006.03.110
[18] C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, “Plastic Solar Cells,” Advanced Functional Materials, Vol. 11, February 2001, pp. 15-26. doi:org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
[19] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromerz and J. C. Hummelen, “2.5% Efficient Organic Plastic Solar Cells,” Applied Physics Letters, Vol. 78, December 2001, pp. 841-843. doi:org/10.1063/1.1345834
[20] C. H. Kuo, W. K. Cheng, K. R. Lin, M. K. Leung and K. H. Hsieh, “High-Efficiency Poly(phenylenevinylene)-co- Fluorene Copolymers Incorporating a Triphenylamine as the End Group for White-Light-Emitting Diode Applications,” Journal of Polymer Science Part A: Polymer Chem- istry, Vol. 45, October 2007, pp. 4504-4513. doi:org/10.1002/pola.22194
[21] S. K. Lee, T. Ahn, N. S. Cho, J. I. Lee, Y. K. Jung and J. Lee, H. K. Shim, “Synthesis of New Polyfluorene Copolymers with a Comonomer Containing Triphenylamine Units and Their Applications in White-Light-Emitting Diodes,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 45, April 2007, pp. 1199-1209. doi:org/10.1002/pola.21892
[22] L. J. Huo, C. He, M. F. Han, E. J. Zhou and Y. F. Li, “Alternating Copolymers of Electron-Rich Arylamine and Electron-Deficient 2,1,3-Benzothiadiazole: Synthesis, Char- acterization and Photovoltaic Properties,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 45, September 2007, pp. 3861-3871. doi:org/10.1002/pola.22136
[23] S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere and J. Roncali, “Triphenylamine?Thienylenevinylene Hybrid Systems with Internal Charge Transfer as Donor Materials for Heterojunction Solar Cells,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 128, March 2006, pp. 3459-3466. doi:org/10.1021/ja058178e
[24] B. Kouskoussa, M. Morsli, K. Benchouk, G. Louarn, L. Cattin, A. Khelil and J. C. Bernede, “On the Improvement of the Anode/Organic Material Interface in Organic Solar Cells by the Presence of an Ultra-Thin Gold layer,” Physical Status Solidity, Vol. 206, February 2009, pp. 311-315.
[25] Y. Li, L. Xue, H. Xia, B. Xu, S. Wen and W. Tian, “Synthesis and Properties of Polythiophene Derivatives Containing Triphenylamine Moiety and Their Photovoltaic Applications,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 46, 2008, pp. 3970-3984. doi:org/10.1002/pola.22737

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.