Anaerobic Biotransformation of Nitro-Compounds to Amines by Bovine Rumen Fluid

Abstract

Microorganims of the bovine rumen fluid biocatalyzed the reduction of nitro-compound substrates to yield the respective amines. This enzymatic process, using ruminal contents, has rarely been reported in associa- tion with the bioreduction of nitro groups. The biotransformation reactions catalyzed by this system were de- pendent of both the electronic characteristics and the area/volume of the nitro-substrates confirming the processes are enzymatic. The semi-preparative scale biotransformation went by in good yield showing the rumen fluid may be employed in the synthesis of amines under very mild conditions and, moreover, it may have application in the bioremediation of nitro-compounds.

Share and Cite:

A. Rodríguez, I. Irazoqui, G. Álvarez, C. Cajarville, J. Repetto, M. González and H. Cerecetto, "Anaerobic Biotransformation of Nitro-Compounds to Amines by Bovine Rumen Fluid," Green and Sustainable Chemistry, Vol. 1 No. 3, 2011, pp. 47-53. doi: 10.4236/gsc.2011.13009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Esteve-Nú?ez, A. Caballero and J. L. Ramos, “Bio-logical Degradation of 2,4,6-Trinitrotoluene,” Microbi-ology and Molecular Biology Reviews, Vol. 65, No. 3, 2001, pp. 335-352. doi:10.1128/MMBR.65.3.335-352.2001
[2] Z. Snellinx, A. Nepoví?m, S. Taghavi, J. Vangronsveld, T. Vanek and D. van der Lelie, “Biological Remediation of Explosives and Related Nitroaromatic Compounds,” En-vironmental Science Pollution Research International, Vol. 9, No. 1, 2002, pp. 48-61. doi:10.1007/BF02987316
[3] J. L. Ramos, M. M. González-Pérez, A. Caballero and P. van Dillewijn, “Bioremediation of Polynitrated Aromatic Compounds: Plants and Microbes Put up a Flight,” Cur-rent Opinion in Biotechnology, Vol. 16, No. 3, 2005, pp. 275-281. doi:10.1016/j.copbio.2005.03.010
[4] T. J. Fleischmann, K. C. Walker, J. C. Spain, J. B. Hughes and A. M. Craig, “Anaerobic Transformation of 2,4,6- TNT by Bovine Ruminal Microbes,” Biochemical and Biophysical Research Communications, Vol. 314, No. 4, 2004, pp. 957-963. doi:10.1016/j.bbrc.2003.12.193
[5] E. L. Rylott, R. G. Jackson, F. Sabbadin, H. M. B. Seth- Smith, J. Edwards, C. S. Chong CS, S. E. Strand, G. Grogan and N. C. Bruce, “The Explosive-Degrading Cy-tochrome P450 XplA: Biochemistry, Structural Features and Prospects for Bioremediation,” Biochimica et Bio-physica Acta, Vol. 1814, No. 1, 2011, pp. 230-236.
[6] K.-H. Blotevogel and T. Gorontzy, “Microbial Degrada-tion of Compounds with Nitro Functions,” In: J. Klein, Ed., Biotechnology, Vol. 11b: Environmental Processes II, Wiley-VCH, Weinheim, 2000, pp. 274-302.
[7] M. Kulkarni and A. Chaudhari, “Microbial Remediation of Nitro-Aromatic Compounds: An Overview,” Journal of Environmental Management, Vol. 85, No. 2, 2007, pp. 496-512. doi:10.1016/j.jenvman.2007.06.009
[8] J.M. Brunel and G. Buono, “Enantioselective Borane Catalyzed Reduction of Imines,” Synlett, Vol. 2, 1996, pp. 177-178. doi:10.1055/s-1996-5343
[9] L. Pehlivan, E. Métay, S. Laval, W. Dayoub, P. Demon-chaux, G. Mignani and M. Lemaire, “Alternative Method for the Reduction of Aromatic Nitro to Amine Using TMDS-Iron Catalyst System,” Tetrahedron, Vol. 67, No. 10, 2011, pp. 1971-1976. doi:10.1016/j.tet.2010.12.070
[10] W. Peng, F. Zhang, G. Zhang, B. Liu and X. Fan, “Se- lective Reduction of 4,4′-Dinitrostilbene-2,2’-Disulfonic Acid Catalyzed by Supported Nano-Sized Gold with So-dium Formate as Hydrogen Source,” Catalysis Commu-nications, Vol. 12, No. 6, 2011, pp. 568-572. doi:10.1016/j.catcom.2010.12.006
[11] D. E. Gibbs and D. Barnes, “Asymmetric Synthesis of Amines by Action of Baker’s Yeast on Oximes,” Tetra-hedron Letters, Vol. 31, No. 39, 1990, pp. 5555-5558.
[12] J. A. Blackie, N. Turner and A. Wells, “Concerning the Baker’s Yeast (Saccharomyces cerevisiae) Mediated Re-duction of Nitroarenes and Other N-O Containing Func-tional Groups,” Tetrahedron Letters, Vol. 38, No. 17, 1997, pp. 3043-3046. doi:10.1016/S0040-4039(97)00504-2
[13] D. N. Kamra, “Rumen Microbial Ecosystem,” Current Science, Vol. 89, No. 1, 2005, pp. 124-135.
[14] P. H. Janssen, “Influence of Hydrogen on Rumen Me-thane Formation and Fermentation Balances through Mi-crobial Growth Kinetics and Fermentation Thermody-namics,” Animal Feed Science and Technology, Vol. 160, No. 1-2, 2010, pp. 1-22. doi:10.1016/j.anifeedsci.2010.07.002
[15] J. T. Hovermale and A. M. Craig, “Metabolism of Pyr- rolizidine Alkaloids by Peptostreptococcus Heliotrinre- ducens and a Mixed Culture Derived from Ovine Ruminal Fluid,” Biophysical Chemistry, Vol. 101-102, No. 10, 2002, pp. 387-399. doi:10.1016/S0301-4622(02)00152-7
[16] N. K. Gurung, D. L. Rankins and R. A. Shelby, “In Vitro Ruminal Disappearance of Fumonisin B1 and Its Effects on in Vitro Dry Matter Disappearance,” Veterinary & Human Toxicology, Vol. 41, No. 4, 1999, pp. 196-199.
[17] R. Hedman and H. Pettersson, “Transformation of Niva- lenol by Gastrointestinal Microbes,” Archiv fur Tierer- nahrung, Vol. 50, No. 4, 1997, pp. 321-329.
[18] K. H. Kiessling, H. Pettersson, K. Sandholm and M. Ol-sen, “Metabolism of Aflatoxin, Ochratoxin, Zearalenone and Three Trichothecenes by Intact Rumen Fluid, Rumen Protozoa, and Rumen Bacteria,” Applied and Environ-mental Microbiology, Vol. 47, No. 5, 1984, pp. 1070- 1073.
[19] R. C. Anderson, M. A. Rasmussen and M. J. Allison, “Metabolism of the Plant Toxins Nitropropionic Acid and Nitropropanol by Ruminal Microorganisms,” Applied and Environmental Microbiology, Vol. 59, No. 9, 1993, pp. 3056-3061.
[20] M. Merlino, M. Boiani, H. Cerecetto and M. González, “2-Benzyl-2-Methyl-2H-Benzimidazole 1,3-Dioxide De-riva- Tives: Spectroscopic And Theoretical Study,” Spectrochimica Acta Part A, Vol. 67, No. 2, 2007, pp. 540-549. doi:10.1016/j.saa.2006.08.013
[21] M. O. Daodu and O. J. Babayemi, “Utilization of Some Edge-Row Plants as Forage in Nigeria,” Pakistan Journal of Nutrition, Vol. 8, No. 8, 2009, pp. 1269-1274. doi:10.3923/pjn.2009.1269.1274
[22] Wavefunction, Inc., “Spartan’04 for Windows,” Irvine, California, USA.
[23] D. E. Wachenheim, L. L. Blythe and A. M. Craig, “Cha- racterization of Rumen Bacterial Pyrrolizidine Alkaloid Biotransformation in Ruminants of Various Species,” Veterinary & Human Toxicology, Vol. 34, No. 6, 1992, pp. 513-517.
[24] H. Korbekandi, P. Mather, J. Gardiner and G. Stephens, “Reduction of Aliphatic Nitro Groups Using an Obligately Anaerobic Whole Cell Biocatalyst,” Enzyme and Microbial Technology, Vol. 42, No. 4, 2008, pp. 308-314. doi:10.1016/j.enzmictec.2007.10.009
[25] A. O. Pacheco, E. Kagohara, L. H. Andrade, J. V. Coma- sseto, I. H.-S. Crusius, C. R. Paula and A. L. M. Porto, “Biotransformations of Nitro-Aromatic Compounds to Amines and Acetamides by Tuberous Roots of Arracacia Xanthorrhiza and Beta Vulgaris and Associated Micro-organism (Candida guilliermondii),” Enzyme and Micro-bial Technology, Vol. 42, No. 1, 2007, pp. 65-69. doi:10.1016/j.enzmictec.2007.08.001
[26] J. W. Czerkawski and G. Breckenridge, “Design and De- velopment of a Long-Term Rumen Simulation Technique (Rusitec),” British Journal of Nutrition, Vol. 38, No. 3, 1977, pp. 371-384. doi:10.1079/BJN19770102
[27] J. B. Russell and H. J. Strobel, “Microbial Energetics. Quantitative Aspects of Ruminant Digestion and Meta-bolism,” CABI, Wallingford, 2005, pp. 229-261.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.