Share This Article:

The Lateral Occipital Complex is Activated by Melody with Accompaniment: Foreground and Background Segregation in Auditory Processing

Abstract Full-Text HTML Download Download as PDF (Size:253KB) PP. 94-101
DOI: 10.4236/jbbs.2011.13013    4,895 Downloads   10,166 Views   Citations

ABSTRACT

Objective: Most of the western music consists of a melody and an accompaniment. The melody is referred to as the foreground, with the accompaniment the background. In visual processing, the lateral occipital complex (LOC) is known to participate in foreground and background segregation. We investigated the role of LOC in music processing with use of positron emission tomography (PET). Method: Musically naïve subjects listened to unfamiliar novel melodies with (accompaniment condition) and without the accompaniment (melodic condition). Using a PET subtraction technique, we studied changes in regional cerebral blood flow (rCBF) during the accompaniment condition compared to the melodic condition. Results: The accompanyment condition was associated with bilateral increase of rCBF at the lateral and medial surfaces of both occipital lobes, medial parts of fusiform gyri, cingulate gyri, precentral gyri, insular cortices, and cerebellum. During the melodic condition, the activation at the anterior and posterior portions of the temporal lobes, medial surface of the frontal lobes, inferior frontal gyri, orbitofrontal cortices, inferior parietal lobules, and cerebellum was observed. Conclusions: The LOC participates in recognition of melody with accompaniment, a phenomenon that can be regarded as foreground and background segregation in auditory processing. The fusiform cortex which was known to participate in the color recognition might be activated by the recognition of flourish sounds by the accompaniment, compared to melodic condition. It is supposed that the LOC and fusiform cortex play similar functions beyond the difference of sensory modalities.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Satoh, K. Takeda, K. Nagata and H. Tomimoto, "The Lateral Occipital Complex is Activated by Melody with Accompaniment: Foreground and Background Segregation in Auditory Processing," Journal of Behavioral and Brain Science, Vol. 1 No. 3, 2011, pp. 94-101. doi: 10.4236/jbbs.2011.13013.

References

[1] K. Grill-Spector, T. Kushnir, S. Edelman, V. Itzchak and R. Malach, “Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe,” Neuron, Vol. 21, No. 1, 1998, pp. 191-202. doi:10.1016/S0896-6273(00)80526-7
[2] K. Grill-Spector, Z. Kourtzi and N. Kanwisher, “The Lateral Occipital Complex and Its Role in Object Recognition,” Vision Research, Vol. 41, No. 10-11, 2001, pp. 1409-1422. doi:10.1016/S0042-6989(01)00073-6
[3] R. Malach, J. B. Reppas, R. R. Benson, K. K. K. Kwong, H. Jiang, W. A. Kennedy, P. J. Ledden, T. J. Brady, B. R. Rosen and R. B. H. Tootell, “Object-Related Activity Revealed by Functional Magnetic Resonance Imaging in Human Occipital Cortex,” Proceedings of the National Academy of Sciences of the USA, Vol. 92, No. 18, 1995, pp. 8135-8139. doi:10.1073/pnas.92.18.8135
[4] U. Hasson, T. Hendler, D. B. Bashat and R. Malach, “Vase or Face? Neural Correlate of Shape-Selective Grouping Processes in the Human Brain,” Journal of Cognitive Neuroscience, Vol. 13, No. 6, 2001, pp. 744- 753. doi:10.1162/08989290152541412
[5] A. Amedi, R. Malach, T. Hendler, P. Sharon and E. Zohary, “Visuo-Haptic Object-Related Activation in the Ventral Visual Pathway,” Nature Neuroscience, Vol. 4, No. 3, 2001, pp. 324-330. doi:10.1038/85201
[6] S. Sadie, “The Grove Concise Dictionary of Music,” Macmillan, London, 1994.
[7] B. Snyder, “Melody,” In: B. Snyder, Ed., Music and Memory, MIT Press, Cambridge, 2000, pp. 135-158.
[8] B. Grison, “Une etude sur les alterations musicales au cours des lesions hemispheriques,” [Thesis]. Paris, 1972. Cited by A. L. Benton, “The Amusias,” In: M. Critchley and R. A. Henson, Eds., Music and the Brain, William Heinemann Medical Books Limited, London, 1977, pp. 378-397.
[9] M. Satoh, K. Takeda, K. Nagata, J. Hatazawa and S. Kuzuhara, “Activated Brain Regions in Musicians During An Ensemble: A PET Study,” Cognitive Brain Research, Vol. 12, No. 1, 2001, pp. 191-108. doi:10.1016/S0926-6410(01)00044-1
[10] M. Satoh, K. Takeda, K. Nagata, J. Hatazawa, and S. Kuzuhara, “The Anterior Portion of the Bilateral Temporal Lobes Participates in Music Perception: A Positron Emission Tomography Study,” American Journal of Neuroradiology, Vol. 24, No. 9, 2003, pp. 1843-1848.
[11] M. Satoh, K. Takeda, K. Nagata, E. Shimosegawa and S. Kuzuhara, “Positron Emission Tomography of Brain Regions Activated by Recognition of Familiar Music,” American Journal of Neuroradiologyl, Vol. 27, No.5 , 2006, pp. 1101-1106.
[12] I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido and K. Uemura, “A System for Cerebral Blood Flow Measurement Using an H215O Autoradiographic Method and Positron Emission Tomography,” Journal of Cerebral Blood Flow & Metabolism, Vol. 7, 1987, pp. 143-153. doi:10.1038/jcbfm.1987.37
[13] S. Minoshima, R. A. Koeppe, J. A. Fessler, M. A. Mintum, K. L. Berger, S. F. Taylor and D. E. Kuhl, “Integrated and Automated Data Analysis Method for Neuronal Activation Studies Using [O-15] Water PET,” In: K. Uemura, N. A. Lasen, T. Jones and I. Kannno, Eds., Quantification of Brain Function, Tracer Kinetics and Image Analysis in Brain PET, Excerpta Medica/Elsevier, Amsterdam, 1993, pp. 409-417.
[14] J. Talairach and P. Tournoux, “Co-Planar Stereotaxic Atlas of the Human Brain,” Thieme, New York, 1988.
[15] V. J. Schmithorst, “Separate Cortical Networks Involved in Music Perception: Preliminary Functional MRI Evidence for Modularity of Music Processing,” Neuroimage, Vol. 25, No. 2, 2005, pp. 444-451. doi:10.1016/j.neuroimage.2004.12.006
[16] S. Brown, M. J. Martinez, D. A. Hodges, P. T. Fox and L. M. Parsons, “The Song System of the Human Brain,” Cognitive Brain Research, Vol. 20, No. 3, 2004, pp. 363-375. doi:10.1016/j.cogbrainres.2004.03.016
[17] A. R. Damasio, T. Yamada, H. Damasio, J. Corbett and J. McKee, “Central Achromatopsia: Behavioral, Anatomic, and Physiological Aspects,” Neurology, Vol. 30, 1980, pp. 1064-1071.
[18] M. Corbetta, F. M. Miezin, S. Dobmeyer, G. L. Shulman and S. E. Petersen, “Attentional Modulation of Neural Processing of Shape, Color, and Velocity in Humans,” Science, Vol. 248, No. 4962, 1990, pp. 1556-1559. doi:10.1126/science.2360050
[19] M. M. Mesulam, and E. J. Mufson, “The insula of Reil in man and monkey: architectonics, connectivity, and function,” In: A. Peters and E. G. Jones, Eds., Cerebral Cortex, Plenum Press, New York, 1985, pp. 179-226.
[20] A. D. Craig, “How Do You Feel? Interoception: The Sense of the Physiological Condition of the Body,” Nature Reviews Neuroscience, Vol. 3, No. 8, 2002, pp. 655-666.
[21] E. L. Johnsen, D. Tranel, S. Lutgendorf and R. Adolph, “A Neuroanatomical Dissociation for Emotion Induced by Music,” International Journal of Psychophysiology, Vol. 72, No. 1, 2009, pp. 24-33. doi:10.1016/j.ijpsycho.2008.03.011
[22] A. J. Blood and R. J. Zatorre, “Intensely Pleasurable Responses to Music Correlate with Activity in Brain Regions Implicated in Reward and Emotion,” Proceedings of the National Academy of Sciences of the USA, Vol. 98, No. 20, 2001, pp. 11818-11823. doi:10.1073/pnas.191355898
[23] P. Janata, B. Tillmann and J. Bharucha, “Listening to Polyphonic Music Recruits Domain-General Attention and Working Memory Circuits,” Cognitive, Affective, & Behavioral Neuroscience, Vol. 2, No. 2, 2002, pp. 121- 140. doi:10.3758/CABN.2.2.121
[24] J. D. Schmahmann and J. C. Sherman, “The Cerebellar Cognitive Affective Syndrome,” Brain, Vol. 121, No. 4, 1998, pp. 561-579. doi:10.1093/brain/121.4.561
[25] L. M. Parsons, “Exploring the Functional Neuroanatomy Of Music Performance, Perception, and Comprehension,” In: I. Peretz and R. Zatorre Eds., The Cognitive Neuroscience of Music, Oxford University Press, New York, 2003, pp. 247-268.
[26] B. Milner, “Laterality Effects in Audition,” In: V. B. Mountcastle, Ed., Interhemispheric Relations and Cerebral Dominance, Johns Hopkins University Press, Baltimore, 1962, pp. 177-195.
[27] R. J. Zatorre, “Discrimination and Recognition of Tonal Melodies after Unilateral Cerebral Excisions,” Neuropsychologia, Vol. 23, No. 1, 1985, pp. 31-41. doi:10.1016/0028-3932(85)90041-7
[28] M. Dennis and T. Hopyan, “Rhythm and Melody in Children and Adolescents after Left or Right Temporal Lobectomy,” Brain and Cognition, Vol. 47, No. 3, 2001, pp. 461-469. doi:10.1006/brcg.2001.1322
[29] A. R. Halpern and R. J. Zatorre, “When That Tune Runs Through Your Head: A PET Investigation of Auditory Imagery for Familiar Melodies,” Cerebral Cortex, Vol. 9, No. 7, 1999, pp. 697-704. doi:10.1093/cercor/9.7.697
[30] S. S. Yoo, C. U. Lee and B. G. Choi, “Human Brain Mapping of Auditory Imagery: Event-Related Functional MRI Study,” Neuroreport, Vol. 12, 2001, pp. 3045-3049. doi:10.1097/00001756-200110080-00013
[31] M. Schurmann, T. Raij, N. Fujiki and R. Hari, “Mind’s ear in a Musician: Where and When in the Brain,” Neuroimage, Vol. 16, No. 2, 2002, pp. 434-440. doi:10.1006/nimg.2002.1098
[32] M. Corbetta, S. Miezin, S. Dobmeyer, G. L. Shulman and S. E. Petersen, “Selective and Divided Attention During Visual Discrimination of Shape, Color, and Speed: Functional Anatomy by Positron Emission Tomography,” Journal of Neuroscience, Vol. 11, No. 8, 1991, pp. 2383- 2402.
[33] B. Kolb, I. Q. Whishaw, “Attention, Imagery, and Consciousness,” In: B. Kolb and I. Q. Whishaw Eds., Fundamental of Human Neuropsychology, W. H. Freeman, New York, 1996, pp. 465-476.
[34] V. Poghosyan, T. Shibata and A. A. Ioannides, “Effects of Attention and Arousal on Early Responses in Striate Cortex,” European Journal of Neuroscience, Vol. 22, No. 1, 2005, pp. 225-234. doi:10.1111/j.1460-9568.2005.04181.x
[35] M. E. Raichle and A. Z. Snyder, “A Default Mode of Brain Function: A Brief History of an Evolving Idea,” Neuroimage, Vol. 37, No. 4, 2007, pp. 1083-1090. doi:10.1016/j.neuroimage.2007.02.041
[36] A. M. Morcom, and P. C. Fletcher, “Cognitive Neuroscience: The Case for Design Rather than Default,” Neuroimage, Vol. 37, No. 4, 2007, pp. 1097-1099. doi:10.1016/j.neuroimage.2007.07.018

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.