Growth Kinetics of Nd2Fe14B Phase during Hydrogen-Induced Reverse Phase Transformation in Nd2Fe14B Type Nanocrystalline Magnetic Alloy
Sergey Borisovich Rybalka
DOI: 10.4236/msa.2011.28149   PDF   HTML     5,219 Downloads   8,115 Views   Citations


The influence of hydrogen pressure on kinetics of growth of Nd2Fe14B phase during hydrogen-induced reverse phase transformations in the industrial Nd2Fe14B hard magnetic alloy has been studied. It has been determined that, as the temperature and the initial hydrogen pressure increase, a reverse phase transformation significantly accelerates. It has been shown that the kinetics of the reverse phase transformation is controlled by the Fe atoms diffusion and that the rate growth of new Nd2Fe14B phase increase with increase of initial hydrogen pressure. On the base of the Kolmogorov kinetic theory the kinetic equation describing influence of initial hydrogen pressure on the isothermal kinetic diagram for this transformation has been obtained.

Share and Cite:

S. Rybalka, "Growth Kinetics of Nd2Fe14B Phase during Hydrogen-Induced Reverse Phase Transformation in Nd2Fe14B Type Nanocrystalline Magnetic Alloy," Materials Sciences and Applications, Vol. 2 No. 8, 2011, pp. 1109-1115. doi: 10.4236/msa.2011.28149.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Campbell, “Permanent Magnet Materials and Their Applications,” Cambridge University Press, Cambridge, 1994.
[2] O. Gutfleisch, “Controlling the Properties of High Energy Density Permanent Magnetic Materials by Different Processing Routes,” Journal of Physics D: Applied Physics, Vol. 33, No. 17, 2000, pp. R157-R172. doi:10.1088/0022-3727/33/17/201
[3] A. Kirchner, W. Grunberger, O. Gutfleisch, V. Neu, K.-H. Muller and L. Schultz, “Textured NdFeB HDDR Magnets Produced by Die-Upsetting and Backward Extrusion,” Journal of Physics D: Applied Physics, Vol. 31, No. 7, 1998, pp. 1660-1666. doi:10.1088/0022-3727/31/14/008
[4] M. Liu, Y. Sun, G. B. Han, W. Yang and R. W. Gao, Dependence of Anisotropy and Coercivity on Microstructure in HDDR Nd–Fe–B Magnet,” Journal of Alloys and Compounds, Vol. 478, 2009, pp. 303-307. doi:10.1016/j.jallcom.2008.12.048
[5] S. Sugimoto, N. Koikea, D. Book, T. Kagotani, M. Okada, K. Inomata and M. Homma, “An Improved HDDR Treatment for the Production of Anisotropic Nd–Fe–B Ternary Powders,” Journal of Alloys and Compounds, Vol. 330-332, 2002, pp. 892-896. doi:10.1016/S0925-8388(01)01503-1
[6] T. Takeshita, “Present Status of the Hydrogenation-Decom-Position-Desorption-Recombination Process as Applied to the Production of Magnets,” Journal of Alloys and Compounds, Vol. 193, 1993, pp. 231-234. doi:org/10.1016/0925-8388(93)90356-R
[7] M. Kubis, K. H. Muller and L. Schultz, “Hydrogenation and Disproportionation of Sm2Fe17?xGax at High hydrogen Pressures,” Journal of Applied Physics, Vol. 83, No. 11, 1998, pp. 6905-6907. doi:10.1063/1.367589
[8] M. Kubis, A. Handstein, B. Gebel, O. Gutfleisch, K. H. Muller and L. Schultz, “Highly Coercive SmCO5 Magnets Prepared by a Modified Hydrogenation-Dispropor- tionation-Desorption-Recombination Process,” Journal of Applied Physics, Vol. 85, No. 8, 1999, pp. 5666-5668. doi:10.1063/1.369834
[9] V. A. Goltsov, S. B. Rybalka, A. F. Volkov, Y. G. Putilov and V. A. Didus, “Effect of Hydrogen Pressure on the Kinetics of the Hydrogen-Induced Diffusional Phase Transformation in an R2Fe14B Alloy,” The Physics of Metals and Metallography, Vol. 89, No. 4, 2000, pp. 363-366.
[10] V. A. Didus, S. B. Rybalka, D. Fruchart and V. A. Goltsov, “Influence of Hydrogen Pressure on the Kinetics of Hydrogen-Induced Diffusive Phase Transformations in the Nd2Fe14B Alloy,” Journal of Alloys and Compounds, Vol. 356-357, 2003, pp. 386-389. doi:10.1016/S0925-8388(03)00224-X
[11] S. B. Rybalka, V. A. Goltsov, V. A. Didus and D. Fruchart, “Fundamentals of the HDDR Treatment of Nd2Fe14B Type Alloys,” Journal of Alloys and Compounds, Vol. 356-357, 2003, pp. 390-394. doi:10.1016/S0925-8388(03)00362-1
[12] O. Gutfliesch, M. Matzinger, J. Fidler and I. R. Harris, “Characterisation of Solid-HDDR Processed Nd16Fe76B8 Alloys by Means of Electron Microscopy,” Journal of Magnetism and Magnetic Materials, Vol. 147, No. 3, 1995, pp. 320-330. doi:10.1016/0304-8853(95)00026-7
[13] R. Becker and W. Doering, “Kinetische Behandlung der Keimbildung in Uebersaetigen Daempfen,“ Annalen der Physik, Vol. 24, No. 8, 1935, pp. 712-752.
[14] R. Becker, “Die Keimbildung bei der Ausscheidung In Metallischen Mischkristallen,” Annalen der Physik, Vol. 32, No. 1, 1938, pp. 128-140. doi:10.1002/andp.19384240115
[15] M. Lübbehusen and H. Mehrer, “Self-Diffusion in α-Iron: The Influence of Dislocation and the Effect of Magnetic Phase Transition,” Acta Metallurgica et Materialia, Vol. 38, 1990, pp. 283-292. doi:10.1016/0956-7151(90)90058-O
[16] S. D. Gertsriken and I. Ya. Dekhtyar, “Diffusion in Metals and Alloys in Solid Phase,” GIFML, Moscow, 1960.
[17] A. N. Kolmogorov, “On Statistical Theory of Metals Crystallization,” DAN SSSR: Seriya Matematicheskaya, Vol. 1, No.1, 1937, pp. 355-360
[18] S. Gleston, K. J. Laider and H. Eyring, “The Theory of Absolute Rate Processes,” McGraw-Hill Book Company, New York, 1941.
[19] D. Turnbull and J. C. Fisher, “Rate of Nucleation in Condensed Systems,” Journal of Chemical Physics, Vol. 17, 1949, pp. 71-73. doi:10.1063/1.1747055
[20] B. Ya. Lyubov, “Kinetic Theory of Phase Transformations,” Metallurgiya, Moscow, 1969.
[21] M. Hillert, “Diffusion and Interface Control of Reactions in Alloys,” Metallurgical Transactions A, Vol. 6A, 1975, pp. 5-19. doi:10.1007/BF02673664
[22] J. W. Christian, “The Theory Transformations in Metals and Alloys,” Pergamon Press, Oxford, 2002.
[23] S. B. Rybalka, “Kinetics of Hydrogen-Induced Diffusive phase Transformations in Nd15Fe77B8 Alloy,” Bulletin of Donetsk University А, No. 1, 2002, pp. 286-290.
[24] P. L. Gruzin, Yu. V. Korneev and G. V. Kurdyumov, “Effect of Carbon on Self-Diffusion of Iron,” DAN SSSR: Seriya Tekhnicheskoy Phisiki, Vol. 80, No.1, 1951, pp. 49-51.
[25] H. W. Mead and C. E. Birchenall, “Self-Diffusion of Iron in Austenite,” Journal of Metals, Vol. 8, No. 10, 1956, pp. 1336-1339.
[26] A. A. Smirnov, “The Molecular-Kinetic Theory of Metals,” Nauka, Moscow, 1966.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.